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Abstract

A cyclic evolution of a pure quantum state is characterized by a closed glinviine projective
Hilbert spacéP#, equipped with the Fubini-Study geometry. It is known that the geometric phase
¥g for this evolution is given by the integral of the symplectic form of the Fubini-Study geometry
over an arbitrary surface spannipgrhis result extends to an infinite-dimensional Hilbert space for
a bosonic quantum field. We prove thgtis bounded above by the infimum area over all surfaces
spanningy, and that the bound is attainedyifcan be spanned by a holomorphic curve. Using an
earlier result concerning the intrinsic Euclidean geometry of the coherent state subménifeld
derive an expression for the geometric phase for a cyclic evolution amongst coherent states. We
indicate how the intensity of a classical configuration can be inferred from the winding number of
the exponential geometric phase about the origin in the complex plane. In the case of photon states
we present group theoretic and 2-component spinor representatidonsWweé derive an expression
for ¥g in the case of a sequence of measurements such that the resulting states are coherent at
each step, in terms of a sequence of projection operators. The situation in relation to some earlier
experiments of Pancharatnam and Tomita—Chiao is explained.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Geometric phases in physics have been of theoretical and experimental interest since
Berry introduced the concept of a gauge invariant phase acquired by a quantum system
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undergoing cyclic evolution, in the adiabatic approximafid®]. A precursor of Berry’'s
work was due t¢40] who introduced a geometric phase for classical electromagnetic fields,
which correspond to coherent states of the quantized electromagnetic field. Berry’'s phase
factor was interpreted geometrically as the holonomy of a connection on the parameter
space of the Hamiltonian generating the cyclic evoluf#s]. Aharonov and Anandaji]
and Anandan and Aharond8], extended this phase to non-adiabatic cyclic evolutions.
The idea was extended further within the frameworg@dmetric quantum mechanigee
[9,7,21-23,39), in terms of a connection on a fiber bundle over the projective Hilbert space
and a corresponding group theoretic treatnjdht

The subject of ‘geometric quantum mechan[d€f], introduced iff17,18]and developed
in a physical context by Kibblg80,31], describes the operations of the quantum theory in a
geometrical language, in such a way that all the genuine degrees of freedom of the quantum
system are manifest. This development should be viewed as distinct from geometric quanti-
zation which, in contrast, addresses the question of how to quantize classical systems by car-
rying over the symplectic structure present in their Hamiltonian description into the quantum
domain[46]. In the latter process certain ambiguities arise, in the introduction of the metri-
cal and associated complex structures that characterize a quantum system, but nevertheless
certain natural guantization procedures have been found for specific kinds of systems.

Geometric quantum mechanics, on the other hand, may be viewed as the inverse construc-
tion. The approach taken here is to begin with a quantum mechanical system, equipped with
dynamical (i.e. symplectic) and metrical structures with respect to some Kéahler manifold
KC, and attempt to formulate the operations of quantum theory in geometrical language. One
then obtains a certain ‘classical limit’ by analyzing the space of coherent states, which are
the preferred class of states from which an ancestral classical configuration can be derived
in the form of the solution to some classical field equation, e.g. Maxwell’s equations.

The state space that we shall consider throughout is complex projective Gpéace
arising from the space of rays in the Hilbert spé&t®f complex dimensiom + 1. In this
way the geometrical description passes from the usual Hilbert space description to one in
terms of the projective Hilbert spaé¥{ = CP", with respect to which the dynamical and
probabilistic aspects of the standard quantum theory can be represented. This subject has
been developed by a number of authors in a variety of contexts. In particular the geometric
formulation for a finite-dimensional quantum system was generalized by [R&]dField
and Hughstorj23] to the field theoretic context, where the relevant Hilbert spa¢edk
spaceF (see e.g[24,45,46). In this situation the coherent states have a special role and
their geometry has been studied in def6il3]. The more general state spadéshave
been studied in the literature (e[d.9,25,31), and recently in the context of stochastic
state reduction models (see €1f] and citations therein). The results that follow on the
geometric phase may hold to some extent in these more general cases also, but we shall not
pursue this question here.

In our discussion we shall not confine ourselves to Berry's phase and its generalizations.
In this respect there are essentially two distinct notions of the geometric phase, namely
Berry’s original phase, and the quantum ang&jghat in the classical limit reduce to the
angles of Hannaf28]. These angles are important in relating the geometric phase acquired
by a single particle to the corresponding geometric change of a coherent state that has an
uncertain number of particles.
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In our discussion we illustrate this distinction by means of the experimefd€ gf4]

The paper is organized as follows.$ection 2we first review the necessary background
to the geometric formulation of quantum field theory, and describe the special role of the
submanifold of coherent states and the geometrical features that emerge. A geometric con-
struction that generalizes the Berry phase to the non-adiabatic case is prov@texdion 3
and various examples are discussed.

This is specialized irSection 4to cyclic evolutions that lie within the coherent state
submanifoldC, for which knowledge of the intrinsic geometry @fis exploited to yield a
general expression for the geometric phase.

In Section 5we provide examples of the geometric phase in three situations of electro-
magnetism, for systems described in quantum electrodynamics (QED) by coherent states.
The first example concerns the cyclic evolution of a quantum system amongst coherent
states described by a closed curvé,jiand applies to the SR, C) spinor representation of
the quantum mechanical inner product to yield a general expression for the geometric phase.
Our second example discusses an experimental situation involving a discrete sequence of
measurements resulting in coherent states, such that the evolution is cyclic in the single
particle state spade}*, and open irf. As a special case we recover the classical result due
to [40] for the phase shift in an electromagnetic wave passing through a sequence of polar-
izers, with identical initial and final polarizations, within the photon description of QED. In
the third example we discuss a fibre optic experinjé#t for which the evolution is cyclic
on the 2-sphere of momentum directions of the photon, in the QED description, and yet
open inP#* andC. The resulting rotation of the polarization vector of the photon provides
an example of the quantum angl&$, which in the classical limit reduce to the classical
angles of Hannay, and the relationship between this notion and Berry’'s phase is explained.
We conclude inSection 6with a review of the main results and the essential features of
the physical examples discussed, and comment on the wider physical implications of the
geometric phase for coherent states.

We shall adopt the abstract index notation throughout, as explained §4d.],rexcept
where otherwise indicated by a bold rather than italicized index. In cases where the Dirac
‘ket’ notation is use(l20], state vectors in theingleparticle Hilbert spac@{ will be denoted
|-}, whilst vectors in Fock space are distinguished bydbebleright angular bracket, thus
[-)) € F. Throughout, we maintain the distinction between statgors and their associated
rays in Hilbert space which we refer to amtes Many of the background mathematical
aspects (e.g. geometric phase, isometries, Hamiltonian flow, etc.) of the paper are covered
in [35].

2. Geometric quantum theory

We shall now review some basic concepts of the geometry of quantum theory. The state
manifold M for an (n + 1)-dimensional quantum system consists of the ray§'in,
which we denot&CP", complex projectiver-space. Thug\t has the structure of a Kéhler
manifold[33], and comes equipped with a symplectic ten@gy and Fubini-Study metric
gab, both of which are Hermitian with respect to the complex strucijrevhich satisfies
J}jJ,f = -4, whose eigenspaces serve to define the spaces of (anti-)holomorphic tangent
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vectors onM. In addition to the Hermitian property the symplectic and metrical structures
are related by the complex structure according?tg = J:gpc. Thiscompatibilityimplies

that the symplectic tens@2?° with its indices raised via the (inverse) metg®? is inverse

t0 2ap, thus 222, = 8%. The complex structure enables one to decompose a given
vector ag/® = ¥ @y , wherey®, ¢ lie in the=i (holomorphic and anti-holomorphic)
eigenspaces of respectively. For a real vectof; is equal to the complex conjugate

of ¥*. In the case of a relativistic quantum field this provides the splitting of the field
into its positive and negative frequency parts. In this representation the various relations

above imply that the complex structure has the fdi:?n: iag, 15 = —iaﬁf, and that the
symplectic structure and metric are relatedRyy = igqp, 20 = —igu'p, Wheregyg is
itself Hermitian as a complex valued matrix (see 8] for a more detailed account of
these aspects of the geometry of the state space).

In this geometrical language tiszhrédinger equatiobecomes

dy? = 22%V, H d, (2.1)

where the observable functiaH arises as the expectation of the Hamiltonian operator
according toH = (Wy|H|v¥)/(¥|y). Writing &4 = dy*/dr, we deduce fron(2.1) that
V.£4 = 2022Hy.. Thus, by the Hermitian property of the Hamiltonian with respect to the
complex structuredyy = J;]{Hef, and Jgjf? = —4&%, we see thag“ satisfiesKilling's
equation V&5 = 0. Accordinglyé? generates isometries of the state space, with respect
to the Fubini-Study metric. This corresponds to the well-known unitary evolution in the
Hilbert space.

In the field theoretic context we represent a general state vector as an elerfeok of
spacef:

W) = (v, v, . ) e F, (2.2)

wherey® € H, y*f e H?, etc./H" is then-particle Hilbert spacft5] and the constituent
tensors are symmetric, anti-symmetric for bosonic and fermionic fields respectively. The
squared Hilbert space norm of a veclgij) € Fis then evaluated according to

(GIY)) = V¥ + Vo + VP ap + - . (2.3)
For a bosonic field, the creation and annihilation operators, actingore F, are defined
according to

Cac®¥)) = C@)|¥)) = (0, 0%y, V20 Y, 3oy .., (2.4)

A%Gol ) = A@)Y) = (W6, V205, N3P P, ) (2.5)

and satisfy the commutation relation, Cs] = 8%. In terms of the (Hermitian) field and

momentum operator®, IT the annihilation operator is given by(x) = &(x) + if1(x)
and the above commutation relations are equivalent to the canonical commutation relations
[@(x), [T(x')] = i8(x — x') wherex, x’ denote points in spacetime.
We consider theniversal bundl€see e.g[26]) U over the projective Hilbert spad#,
with projectionz : U — PH, defined so that the fibre above any elemerit&fis the ray
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in the Hilbert spacé{ that it represents. A tangent vectdi/dx))/dx can be decomposed
into horizontal and vertical parts respectively by

d ) D
G V) = YO + @) (2.6)

with vertical part

(y)dly @)
Dly(h)) = ——————— | (2 2.7
¥ (2)) GO [ (A) (2.7)
(cf. [6]). TheFubini-Studymetric on theprojectiveHilbert spaceP? is then determined by

the horizontal tangent vector according to

BYyM)Isy ) _ 4{ (dyr|dy) (¢|d¢)(d1/f|1/f)}

ds? = 4 _
(Yl

(2.8)

(Y1) (ly)?

where the second equality follows fro(.6). In homogeneous coordinatg¢$ on CP”",
(2.8) becomes

_ gV v Ve dvy
Wry)?

An identical argument applies in the case of Fock space for wlfighe F.

ds® (2.9)

2.1. Geometry of coherent states

The coherent state vectol$yc)) € F}, for a bosonic field, are generated via the expo-
nential mapt : |v) — |¢¢)) (cf. [24]) according to

[We)) = expy® Ca)|0)) = (L, ¥, v yP/v21, . yyP o yd/vnl, ) (2.10)

and have normalizatiof(yc|yc)) = exp({¥|v¥)). Observe that a coherent state vector
depends on the choice of phase and amplitude of the underlying single particle state vector
¥* e H!, according to(2.10) The exponentiatiof2.10)can be regarded as a mappifig
from the universal bundle into Fock spaée, U/ — F, which is non-constant along each
fibre w—1(s) for all single particle statese PH?.

From(2.10)the actions ofA%, Cg on|yr)) are

A%Ye)) = YOIPe)) < (WelCo = (Vel Y, (2.11)
A d C ~ d Cc
Cult) = Tt < (el = ;(1;”' (2.12)

which define the space of coherent states (88]). Observe from(2.11) that coherent
states are eigenstates of the annihilation operator.

The calculation of the geometric phase for a coherent state evolution, to follow in
Section 4 requires the following result, due (in the case of single particle quantum me-
chanics#%) to [6], and generalized to a quantum field (Fock sp&gby Field[21,22]and
Field and Hughstof23].



T.R. Field, J.S. Anandan/Journal of Geometry and Physics 50 (2004) 56-78 61

Theorem 2.1. The Fubini-Study metric induced on the coherent state submarifcdd
intrinsically flat. Moreover the Hilbert space vectogs® € #H provide (complex valued
Euclidean coordinates fc.

Proof. We provide two independent derivations of this result for a bosonic quantum field.
Firstly we demonstrate how an earlier treatment dyéltéor single particle £*) quantum
mechanics generalizes to Fock space, and secondly we outline the proof of the result within
the context of abstract Fock space given previous[Rir-23]

(a) For am-dimensional harmonic oscillator the contribution to the coherent state in the
product expansion is the Gaussian wave-packet with wave-function (s¢é,82j):

. B —q(s)? i

T = 2802 e~ C A0 1 Lpoy k) 29
which is normalized so thaty|y) = 1. Applying 3~/8qi to the normalization condition
we find(Y/|x!|/) = ¢', whereupord/dg’ leads to{y|x'x/|y) = 8;j(Aq)?+¢'q’. From
(2.13)the differential of the normalized coherent state vector is given by

S q-dqg dq [ ~
|dy) = (_Z(A )2 +X- (2(A 2 + ﬁdp>> [¥). (2.14)

Thus iy|dy)) = —q-dp/7, together with{dy|dv) = dg?/4(Ag)? + (Aq)? dp?/h? +
(q - dp)2/h?. The squaredhorlzontaldn‘ferennal is therefore given bysy/|sv) =
dg?/4(Aq)? + (Ag)?dp?/R?. Using the Heisenberg relationgAp = (1/2)F, the
metrical line element induced ahis therefore
2 2
g2 = g, dp” (2.15)
(A%~ (Ap)?

In quantum field theory (e.g. QED) we ha¥e = []72; v where! indexes an
individual oscillator mode and eagly is a Gaussian wave-function of the above form
([32]; cf. also[46]). Accordingly the above expression for the line element induced
onC becomes summed over dlland the flatness property is preserved.

(b) In Fock spaceF [21-23]we demonstrate thatis intrinsically flat independently of
the choice of representation fgf* € 7.1 This argument extends the result to the case
of interacting fields. We assume only the commutation relations for the creation and
annihilation operators A, f?,g] = §%, and the defining relation®.11) and (2.12)

For an interacting Lagrangiat and@,g are modified; nevertheless the fundamental
algebraic commutation relation between the prope¢fiekl) and (2.12re preserved.
The particle concept then emerges asymptotically for free fields.

The Fubini-Study metric on projectidckspacePF is identical to(2.8) with |y)
replaced byjy)) € F. Let|¥)) € F denote the Fock state vector that is coherent
with respect toy® e H according to(2.10) From (2.12) we find ((dy|dy)) =
dysdy® (| APC, ). Applying the CCR A%, Cg] = 8% this becomesdy® dy, +

1 The latter references should be consulted for two other independent proofs of this result in the context of Fock
space.
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Yo ¥P dy® dirg) ((¥l4)). Similarly ((y|dy)) = (WICaltr)) dy® = ((WI¥)) e dy®
and therefore the induced line element®reduces to theomplex Euclidearfiorm,
parameterized by® € H?,

ds? = 4dy®dy,. O (2.16)

3. Symplectic construction of the geometric phase

Let P denote the relevant quantum state spégkeor PF as appropriate to the context.
In the non-adiabatic case, for an arbitrary quantum system that undergoes the cyclic evo-
lution y C P, the geometric phase may be characterized by the following gauge invariant
symplectic integral irP,

Vglyl = 12, (3.1)
ScP

where S spansy [5,6]. Closure of the symplectic 2-forif2 ensures that the integral is
independent off. This geometrical invariant can be re-expressed in more familiar Dirac
notation, as a line integral, as follows.

Proposition 3.1.
. (¥|dy)
Yglyl = |7§ ——, (3.2)
ycH (YY)
where|y) undergoes cyclic evolution i such thatw[y] = y C P. A corresponding
result holds foryr)) € F. The result is independent of the choice ofjliftrovided this is a
closed curve .

Although this result is well known (e.g4]), we shall give now a new proof of the
equivalence betweg3.1) and (3.2)

Proof. The Fubini-Study metric o€P" has Kahler potential (e.§16,37):
K = 4109y Ya), (3.3)

where{y®} serve as homogeneous coordinate€£®4. Writing the holomorphic exterior
derivatived = (9(-) /oy*) dy* A we find
v dyre

0K = 4——
vy,

(3.4)

and thus

_ 8% W(pﬁ _
K =4 L _ 7 dy? A dir,. 3.5
<wm wwﬁ)w v (39
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The symplectic 2-form is thef =_i85K (which is real since the anti-commutat;, }
vanishes) can be writtef? = id(0K). Stokes’ theorem applied t8.1) yields (3.2) as
required. O

Observe that the right-hand side (8f2) is equivalent to the same expression (88])
with a term(dy/|¥) subtracted in the numerator of the integrand, and factor of two in the
denominator, since the difference between the two expressions inyoiMes)(y/| ) which
vanishes owing to the single valued nature of the inner produgt

Proposition 3.has the following well-known consequence (88]).

Corollary 3.2. The geometric phasgg defined by(3.1) is equal to the phase acquired
by a state vectofyy,) € ‘H whose evolution is horizontal i1 and whose associated ray
undergoes cyclic evolutiop C P#. In other words 9¢ is the holonomy aroungt of
the connection on the principal fibre bundk defined so that the horizontal sections are
generated by the horizontal vectdig,) € H according to(2.6).

Proof. Write |¥/(r)) = explia(®)|yn() for a(r) € C, so that|yn) acquires the fac-
tor exp(—iAa) aroundy. From the identity|dy) = exp(ia)[|dyn) + i|y¥h) da] we de-
duce (y|dy)/(¥|¥) = ida. From (3.2), therefore, we finddg = —Aw, and so|yp)
acquires ex@vg) aroundy, as required A« and thereforelg are real sincéyn|yn) =
exp(2Ja) (¥|¥) and(yn|yn) is constant by the horizontal property). O

Thus, for example, a state vector that satisfies the (non-linear) modified Schrédinger

equation, introduced if81]:
A i i) (3.6)
t

satisfies these conditions. This equation is non-linear on the state space, although it is
linear along any given unitary trajectory on Hilbert space. In respeCroobllary 3.2we
remark on the Pancharatnam ‘in-phase’ critefit,40]according to which a pair of state
vectors|a), |8) arein-phaseif their superposition has maximum intensity amongst all
superpositions of the forrw) + exp(i6)|B), i.e. («|B) is real and positive. A horizontal
evolution|yn (7)) therefore has the property that, infinitesimally, neighboring state vectors
[Yn(0)) and |[yn(t + df)) are in-phase. On integrating aroupd however,|yy) acquires
a global phase shift. In this way it is then-transitivityof the Pancharatnam in-phase
criterion that gives rise to the geometric phase.

In connection with the expressidB.1) for the Berry phase we observe the following
general result which relates the symplectic construction to the metrical geometry.

Theorem 3.3. The geometric phase is bounded above according to

dgly] =< inf [A(S)], (3.7)

where A denotes the area functional with respect to the Fubini-Study rrestidcS spans
y. Equality is attained if and only if there is an S that is a holomorphic curve spanning
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Proof. Given a Kahler manifoldC, and a closed curve C K the integral of the Kéahler
symplectic form over a real 2-surfadec K spanningy is less than or equal to the area
of this surface as measured by the induced metric. The equality holds if and dhity &
holomorphic curve with respect to the complex structiffeof K, i.e. a one-dimensional
complex manifold whose tangent space is spanned by holomorphic tangent vE&ttors
satisfying the eigen-propertif T? = iT% [34].2 The result then follows bg3.1)and letting

K = CP" equipped with the Fubini-Study geometry. O

In the context of spin% systems the theorem has the following elementary consequence.

Corollary 3.4. Fora spin% systemfor which the relevant state spaceG@®*, the curve

y can be spanned by a holomorphic curve given by one of two surfaces on the Riemann
sphere bounded by.2 Accordingly the metrical Fubini-Study area is equal to the integral

of the symplecti@-form. For an(n + 1)-dimensional quantum systethe eigenstates of a

time independent Hamiltonian are fixed points of the unitary motion definé2l byand

by linearity, the projective line L joining a pair of distinct eigenstates is also invariant. Thus

all y ¢ L generated by Schrodinger evolution are spanned by holomorphic ¢uands
therefore equality is obtained ifiheorem 3.3

A more sophisticated example is provided by a system containing two interactiné spin-
particleg14]. In this case the relevant state spac€lis, and there exists a preferred (total)
spin-0 stateZ with orthogonal hyperplan& consisting of all states of total spin 1. The
disentangled states form a 2-quad@icwhich intersects the spin-1 plane in a codi¢
consisting of all spin-1 state’ with definite spin direction. For a giveR € C the stateP’
with opposite spin is obtained as the intersectio@€and its tangenP that is defined as
the CP?! orthogonal to the state. The spin-0 stat@ is then obtained as the intersection of
the pair of tangents t6 at P, P’ thus generating the spin-1 tripl€f O, P’. This situation
is shown inFig. L In relation to the theorem above, for eaelc C, the geometric phase
¥g is given by the minimal spanning area (&9] for a discussion of the geometryig. 1
in the context of quantum mechanical measurement).

In the general case dheorem 3.3consider two independent HamiltoniaHg,, whose
Hamiltonian flows generat& according to the Schrédinger equations:

dyl) = 2°°V,, Hy;) dry. (3.8)

Recall the relatiof9]:

] 0]
s=/ (gapdy* dy*)? = i/ AHdr (3.9)
P h Jp

which relation is independent of the Hamiltonian, and is a gauge invariant expression with
the physical interpretation that the state space distance provides a measure of the uncer-
tainty in the Hamiltonian generating the evolution. We have seen that the gauge invariant

2 The authors are grateful to Ralph Howard for this reference.
3 The choice of surface is not physically significant since the two possibilities amount to solid angles on the
sphere ofp and 4r — ¢ (counted with opposite orientation), leaving €éxfy;) invariant.
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Fig. 1. System of two interacting spi%lparticles.

symplectic integral3.1) manifests itself as Berry’s phase for a cyclic evolutiofPirand in
Section 6we shall illustrate how this is physically observable via the principle of quantum
superposition.

Likewise, themetrical areais manifestly gauge invariant and so admits a physical inter-
pretation, as follows. An infinitesimal element of area is gived.dy= |dy(1)||dy¥ (2| SINO
(¥ normalized) wheré is the angle between the two state differentials with respect to the
intrinsic geometry of induced from the Fubini-Study metric. Frd@9)we havedy ;)| =
AH;) di(; together with the inner productrelationt], dvra2) = V*H(1)VaH2) dr(y) dr(2),
which follows from(3.8). Thus we find

(V'H1))(VoH2))
AH1AH )

Ccosh = (3.10)

The metrical aread generated by the pair of Hamiltonian flows is therefore given by

A= /fs \/(AH(l))Z(AH(Z))Z — (VaHqy V”H(z))z dr drs. (3.11)

(This area could, if desired, also be expressed in terms of the invariant volume measure
on S according tof]s[detg;i)]l/z dr1 din.) The commutator #1, Ho], in general, has an
independent role from the metrical area, as follows. F(8r8), and the inverse property
Qap$2%® = 87, we have2ap dyty) dyrl, = 22°V, H1) V), Hz), which is equal to the com-

mutator expectation functiofiH1), H)]) (see e.g[29]). Thus

//S Qap Q) dyrly) = //SWA{(D, H)]) dr1 dr (3.12)

and thughe symplectic integral coincides with the integral of the commutator function of the
Hamiltonian operators generating. Similarly for the metric, the compatibility property
implies gap$23¢229 = g2 7¢ Jd, and by the Hermitian property g, with respect to/, this
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is equal tag®d. Thus from(3.8)the integral of thedordan producfi.e. the anti-commutator)
is given by the expression corresponding3d.2)with §2 replaced by. Thus

//Sgabdlp?l) dl/f?Z) = //S<{I:I(1), I:I(z)}) dry dro. (313)

As an illustration of this geometry where the state spad&Pis, consider a spir% system
for which S is generated by1) = o, ) = o, whereo; are the SU(2) Pauli matrices.

The commutator is therf{(1), H(»)] = 2ioy, and a spin wave-function can be written, with
respect to the-axis, as

1
_ cos;6
V) < sin30expip )
whereg, ¢ are standarg-polar coordinates. According @orollary 3.4the quantitie$3.11)

and (3.12xoincide for this case, ar(8.12)can be verified as follows. A point on the sphere
can be represented by the Cartesian vectors:

r = (sin@ cosy, sindsing, cosd) = (CoShy), SiNO(y) COSY(y), SiNb(x) SINQ(x))
(3.14)

in z, x-polars respectively. From the relatiothy ;)| = AH;) df;) and the uncertainties
AH; = sinf; we deduce that;, areangular parameters, so that@ = dg. The
commutator function of the generating Hamiltonian$[il§(1), ﬁ(z)]) = 2isind sing and
so integrand of the right-hand side (8.12) is equal to 2isid sing dgy) dp. As ¥y
changes for fixed,, we have the geometrical identitygd, sing = dd.* The left-hand
side 0f(3.12)is the volume form siA dé dy on S, which establisheg3.12)in the case of
this example.

4, Geometric phasesfor coherent states

Our purpose in this section is to illustrate how to apply the symplectic construction of
the geometric phase above to the submanifold of coherent gtabegloing so, we shall
apply the results concerning the intrinsic geometr¢,ads supplied byrheorem 2.1

The results of this section will assume that the state remains as a coherent state during
the quantum evolution. This assumption is valid in the following three physical situations.
If the field is ‘classical’ then it remains ‘classical’, i.e. a coherent state. This is the case with
the experiments d#10] on classical electromagnetic waves. ‘Classical’ here means that the
expectation value of the number operator is very large. Second, even a single particle may
remain as a coherent state (Gaussian state) if a dense sequence of suitable measurements are
made, as shown by Aharonov and V4&]i Finally, a harmonic oscillator that is initially in a
Gaussian or coherent state continues to remain in such a state during Schrodinger evolution.

4 This can be shown e.g. by projecting a line elemeftgonto thex, y plane and calculating the length of its
radial component. In terms of theazimuth this yields @, sin6(y) sing(y) sing, which can also be measured as
do cosé, from which the identity follows using3.14)
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The integral of the symplectic 2-for® = 2,4 dy* A dy" over an open 2-surface
spanning the given closed curyes independent of, by virtue of Stoke’s theorem and
the closure of2. Thus for a cyclic evolution amongst coherent states described by a closed
curve I’ C C we may restrict the spanning surfageo lie within C in order to calculate
the phasg3.2). Thus for a closed curve il we haveyg = [/ ¢ (), where2(c) can be
taken as the induced symplectic form@rTheorem 2.Implies that2 ¢, is identical to the
symplectic form2 on the single particle Hilbert spa@¢ which is complex Euclidean.
(The symplectic tensaR,g = igqp 0N the ambient spad®F, evaluated at a poirt € C, is
distinct from that determined K2.16), but reduces to this Euclidean form when evaluated
ontangentvectors taC, such as in the present case whére C.) Since2™ is a closed
2-form on the Kahler manifold, the open 2-surface integral can be transformed, via
Stokes’ theorem (see e83]), to the closed line integral:

9g = 7§ 2y dyt, (4.1)
Y

where[” is parameterized by the closed cufve- H?. (This follows from the exactness

relation2 = d(Qg;)W‘ dy?).) In Dirac notation, the integrand above can be expressed as
23(yr|dy) and so we have the following result (§2]).

Proposition 4.1. For a cyclic evolution amongst coherent stafés” C parameterized by
a closed curvey = {y%(s)} ¢ H! according to(2.10) the geometric phase acquired by
the coherent state vecttyc)) is given by

9g =23 f (Wldy). 4.2)
Y

where|y) has free normalization over andJ denotes the imaginary part. For a field of
constant intensity(y|y) = k, and therefore the corresponding expression holds @ibim
the right-hand side of2.10)replaced by a factor-i.

CombiningPropositions 3.1 and 4.therefore, we obtain the following correspondence
between the geometric phases for cyclic evolutions in the single particle state space and the
coherent state submanifold.

Proposition 4.2. Given a cyclic evolution amongst single particle stajess P! and
a corresponding coherent state evolutibhC C parameterized by the closed curye=
{¥2(s) € H'} according to(2.10), such thatw[#] = y, and of constant intensitiy|y) =
(¥|N|v) overy, the geometric phases @#* andC are related by

9g(I) = (YY)D 4.3)

Thus for a coherent state evolution such that the expectation of the total number operator
is unity, these two phases coincide

Proposition 4. 5hows that the phagg, in addition to its significance modula2contains
information as to the field intensity € R, through its absolute value. For consider a family
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of closed curve$l'y} C C parameterized by the expectation of the total number operator
(N) = A, i.e.T4(0) = exp(AY2y(0)C4)|0)) for a prescribed closed curyé®(9)} C H
satisfying(y|y) = 1. Proposition 4.implies that¥g(A) = Adg(1), i.e. for a given closed
curve inPH the geometric phase acquired by the associated evolutiis proportional to

the field intensityAs A — 0the curvel™ C C contracts to the vacuuif;)) and correspond-
ingly 9g(A) — 0.Ingeneral, the coherent state vector acquires a phase factof 8x1))

as a result of cyclic evolution around c C. This establishes the following result.

Corollary 4.3. Let W denote the winding number of the locus = {exp(irdg(l)) €
C|0 < A < A} about the origin in the complex plarig Then the field intensity is related
to W according toA ~ 2x|W)|/9g(1). Equality is attained if and only iN9g(1) = 27n
for integern.

5. Electromagnetic manifestation of geometric phases

We consider three examples of geometric phase involving coherent states of the elec-
tromagnetic field. First, using the state space geometry we have described, we present a
general (spinor) formula for the Berry phase acquired for a cyclic evolution that is described
by a closed curve ig.

In the second example we explain a classical experiment di4®}oinvolving a plane
polarized ‘classical’ electromagnetic wave passing through a sequence of polarizers, whose
QED description is such that the evolution is cyclic in the projective single particle Hilbert
spaceP and the system remains in coherent states. This is generalized to an arbitrary cyclic
evolution inP, arising from a discrete sequence of measurements.

Thirdly, we study an example ¢44] involving the passage of a photon, in a coherent
state, through a fibre optic medium. In this case the evolution is cyclic with respect to the
principal null direction of the underlying null electromagnetic field, whose principal spinor
specifies the momentum direction of the photon. In this case a certain geometric phase,
distinct from Berry’s phase and akin to the classical angles of Hannay, emerges.

5.1. Cyclic evolution with respect to coherent state manifold

The electromagnetic field is described in the 2-component spinor formalishygoy
VaBEA B + YA g eaB, and the associated energy momentum is given by the spinor product
Tab = VAV 4 [41]. (The field tensoF gy is real valued since the photon is its own antipar-
ticle.) The condition that the momentupmy = Tapt? be a null vector, or equivalently that
the photon have a well defined momentum direction, can be expressed by the requirement
that the field spinor beull, i.e. yag = v4vp. For supposeiag = kiarp), k # 0, with
pa, ha scaled sothat'u, = 192, = 1 (u® = u* " and likewise for.). Thenp, is given
by

pb = K12t Oy + (- My + P rafiadmwphg + g na) s (5.1)
and therefore
P pa = 2k122% g (L — ™ K aiar?). (5.2)
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Thusp? is null if and only if A o u, i.e. the fieldag is null (e.g., choose a basis such that

_ AN 1 1 0
_wosomo(L)(20)

and alignA¢ along thez-axis so that.s = (Lo, 0). Thust™ Asjia = Aofio/+/2 Which,
together with the normalizationéu, = “A, = 1, impliesu; = 0 so thatus o Ay4).

In other words, for a photon of the quantized electromagnetic field to be in a state of
definite momentum, the associated electromagnetic field, given by the expectation of the
field operator, hasoincidentprinciple null directiong41]. In this case it is straightforward

to verify that the momentum of the photon lies along the direction of the future pointing
null vectorv? <> vApA’

To calculate the geometric phase explicitly we require a gauge invariant expression for
the quantum mechanical inner prodydt) for a spin-1 zero rest-mass field that is ex-
pressed directly in terms of the principal field spirgyg. In the electromagnetic case
such an expression first appears (in vector-tensorial forn@4h and was subsequently
generalized to massless bosonic fields of spins 0,1J22h in terms of 2-component
spinors.

Consider a single photon state described by the positive frequencwﬁgide HD,

with left/right-handed decompositic ) = g e + 5T ean, wherepls) andg), _
areindependenpositive frequency fields. The expression for the quantum mechanical inner

product between a pair of such fiel@2,27]is

1/f(+) (y)¢A/B/ () + 1/’5;%/ (y)¢(AE) (x) 3 AA 3 —BE
a°x da°x
W)= o // S xZo) (x¢ = ¥) (Xe = ye) w @0 -

(5.3)
With regard taProposition 4. e deduce that the geometric phaseffoc C is given by

1 ~
l?g = —2J¢\
T yCH

(x¢ = y)(xe — ye)

left helicity right helicity
Vo OSVAE () + Uy DTV 5w
>y d>X
(x) (y)
Ty x Xy

(5.4)

In the case of a left-handed electromagnetic field, in a coherent state with a definite mo-
mentum direction, we obtain

f /f VA’(X)VB’ (X)va(y)évp(y) d?’Ef’x) ® d®x? = (5.5)
yCH E(V)XE(}) -y )(xc' - )’c)

5 The scalar propagatdx® — y*)(x, — y,) arises from the frequency splitting in the quantum mechanical inner
product, as described [82,27]
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wherev = v(H) | yag = vavp andy is the horizontal lift ofy C P, i.e.y = wh‘l[y] cUu.
For example, consider rotation of about thez-axis, generated by a fixeb:

ig —1
VAx, 9) = a(x) Colszl eXp( 1?“") (5.6)
S|nieexp(§|§0>

where the scalar functioa(x) reflects the spacetime degrees of freedonygé and is
positive frequency. The spinor* rotates with respect to the azimugraccording to

1. 0
s = —EIGA&D, A = ( v 1). (5.7)

From(5.5), therefore, we find

1 i, I v / D
9g = ——ij idg // Doy OVAWPEY) (350 @ b (5.8)
v y E(X)XE()-) (xC - yL)(-xC - )’c)

The field intensity can be expressed (8a3) and (5.6as

1 AXF(y) 3 3
win) = 3 || e ey (5.9)
and thus fron(5.6) and (5.8ve deduce
Og = —2f<¢|1p> cosd dg. (5.10)

For a cyclic evolution inC we require thaty“ of (2.10) undergoes cyclic evolution in
#*, and thusp passes through an angle 4f the field intensity is constar(6.10)yields

vg = —8n(Y|¥) cosy, which scales with the field intensity, as requireddygposition 4.1
Foré = 0, 7 the evolution is a fixed pointiB#?!, but nevertheless a closed curve of positive
length inC c PF, owing to the dependence pf¢)) on the phase of“ in (2.10)

The geometric phase for a closed cuivec C is observable, in principle, via the linear
superposition of state vectors in Fock spdeAccording to the discussion surrounding
Corollary 4.2, the (incoherent) superpositign) = |¥c(A1))) + [¥e(A2))) undergoes the
geometric transformatiofy)) — |x')) = expliA19¢g) [¥ec(A1))) + exp(i A209¢g)|¥e(A2)))
wherey® undergoes cyclic evolution ifi{1. The vectors|x)), |x’)) project to distinct
states inPF, and the Dirac transition probability between the initial and final states can be
calculated in terms of the intensitiets;, A2 and geometric phasg;. In the cased; = 0
(i.e. [¥c(Aq))) is the vacuum)A, = A, this probability reduces to

_ 4+4(1+expA) cos(Adg) 4+ (1 + expA)? -

PO X) = 3 expA) (1 + expA + 2cos(Avg)) (5-11)

which is unity forA = 0.

Superpositions of coherent states, sometimes referred to as ‘cat’ states, involved in this
situation are very difficult to produce experimentally. Nevertheless, since the principle of
quantum superposition is the only essential feature required, the possibility of producing
such states in experimental situations should not be disregarded, and thereby the discussion
above may acquire experimental as well as theoretical significance.
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5.2. Cyclic evolution in single particle state space

Consider a sequence of measurements starting from an arbitrary initial coherent state,
such that the states resulting from each successive measurement remain coherent. Such a
procedure is the discrete analogue of a dense sequence of measurements on a quantum
system such that the state remains withias described if2].

Suppose a system is in a coherent state givep B, Cy |1, @), with C, = 1/+/n!and
In, a)) = |a)®" e H" as in(2.10) Then a measurement is made, effectedlpy g, and
described quantum mechanically#by the projectiona) — (B|a)|8). If the state remains
within C, this can be described by the action of the projection opepafiir, |, B))((n’, Bl
on our initial Fock state vector. The resulting state vector is then

> i’ B, Bl (Z cn|n,a>>) =Y Calln, Bln, @) In, B)), (5.12)
'=0 n=0

n=0

where we have usefln’, B|n, @)) = oy ((n, Bln, @)) and the inner product coefficients
above satisfy((n, Bln, a)) = [(Bla)|" expingqps) Whereg,s = ph(B|a).

An example of this situation is provided by a classical experiment, di4dtpinvolving
an incident plane polarized electromagnetic wave encountering a sequence of polarizers,
such that the plane of polarization is returned to its original setting. The experiment is
of interest since a net phase shift can be predicted from the classical Maxwell equations,
and yet the result anticipates the geometric Berry phase of the (more physically correct)
quantumtheorjl3]. Indeed Pancharatnam’s classical result can be shown within the context
of quantum electrodynamics (QED), provided one works witherentstateg10]. This
two-fold description of the phase shift can be understood from the following correspondence
principle.

Lemma 5.1. A classical configurationy® e H! (e.g. the Pancharatnam classical elec-
tromagnetic wavearises in the quantum theofg.g. QED as the expectation of the field
operator A% @ A” in a coherent state. Thus % — expia)y on cyclic evolution in
PH?, the associated classical field undergoes a phase @hift

Proof. From(2.10), (2.4) and (2.5} follows that the expectatiotiyc|(A* + A%)[¥c)) =
Y* @ ¥¥, i.e. the underlying solution to the classical field equations (cf. [4I8]). O

It is instructive to see how the situation relates to the Hilbert space geometry we have
described. The evolution we consider can be considered as a closed.cuwve> g —
y — --- > § — «in the projectivesingle particle Hilbert spac®, obtained by joining
sequential states vigeodesicsAccording to the Pancharatnam in-phase criterion, following
Corollary 3.2 the geodesic construction has a special significance, as fdi8p42).

Lemma 5.2. Given a distinct pair of states, 8 € PH or PF, and the shorter geodesic
y C P#H joining «, B, the horizontal Iiftwh_l[y] has the property that the state vectors

la) = wgl(a) and|g) = wgl(ﬂ) are in-phase according to the Pancharatnam criterion
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Proof. Construct the (unique) complex projective lihec P joining «, B. The geodesiy
lies onL, as follows.

The geodesic equation for an affinely parameterized geodésic C (M, gap) IS
(d2y/ds?) + I (dy®/ds)(dy</ds) = O wherer is the Christoffel connection of the
metricgap 0N M. GivenM C (N, h), andg = RINdM) the condition for to be a geodesic
with respect taqV, h) is therefore(Fh)bc F(“ bc)(dl//b/ds)(dl/fc/ds) = a(s)(dy?/ds) for
some scalar function, and is afflnely parameterlzed i if and only if a(s) = 0. On
a Kahler manifold, with potentiak, the Christoffel connection is determined E}?y

g% 33K /oy Py ay® and its complex conjugate, while all other components efnish.
In the case of the Fubini-Study metric 6", therefore, we find
gaé’ _
Fgg)ﬁy 3 (I//ﬂl/fywé/ K(n)‘//(ﬁay)é’): (5-13)
Ky

wherex(n) =1+ Z vy, andy® are non-homogeneous coordinates. From the identity

rj; = (8/K(n))(g wlwa/ — g% 1) onCP” andw"‘ ¥',0,0,...)0ny C L, we
deduce thali“(g)1l = F(h)ll alongy, so that(I"'t (@11 — h)ll)(dllfl/ds) l, =0, i.e.the
condition fory C L to be geodesic with respect@P”.

Choose polar coordinates @nas in(5.6), with polar axis in thex direction. A geodesic
then hasp constant, an@5.6) is a horizontal curve a8 varies. The overlap between the
resulting state vectors i&|8) = cos(1/2)0g > 0, as required by the Pancharatnam
criterion. O

On the other hand, given a discrete sequence of states, it is possible to generate a cyclic
evolutiony C P by joining sequential states by a setasbitrary curves inP. In this case,
however, sequential state vectors, obtained from the horizontal liftafe not necessarily
in-phase. Conversely if we require sequential state vectors to be in-phase, for athitrary
thenw —1[y] is not horizontal in general.

Using the geodesic polygon construction, therefore, the geometric phase be cal-
culated fory c P. The horizontal lift ofex—[y] ¢ H is anopencurve, and our original
state vector acquires an overall fackoexp(idg) wheredg = ¢og + ¢y + - - - + ¢se and
F = [{«a|B){Bly) - - - (8]a)|. This fact can be exploited by exponentiating the state vector
resulting from the cyclic evolution i and forming its corresponding coherent state vector
according tq(2.10) Thus we have the following result.

Proposition 5.3. The interference resulting from a discrete sequence of measurements on a
guantum system whose state remains wiftand whose evolution is cyclic \Awith |a) —

|’y = |[F€%a) € H is given by the Dirac transition probability {cc|ag)) 12/(({aclae))
({ag]erg))) according to

T = exp[—(ala) (1 — 2F cosdg + F2)]. (5.14)

Thendg is the (Berry) geometric phase acquired iR and coincides with the ‘classical’
phase shift observed by Pancharatnam; the quafttis the factor by which the intensity
of the field is scaled
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In this case the relevant state space is the Poincaré sphere of polarization states, for fixed
4-momentump®, which isisomorphic to the state space for a sr;:%rparticle. The phase
shift ¥¢ in the ‘classical’ electromagnetic wave is therefore equdiats the solid angle
subtended by the geodesic polygon on the Poincaré sphere.

5.3. Cyclic evolution in momentum

An experiment of Tomita and Chiao describes the passage of a photon through a fibre
optic medium, with changing momentum direction due to the curvature of the medium
[44]. Suppose that the quantum electrodynamic field is described by a coherent state vector
[¥e)), as in(2.10) throughout the passage of the photon along the fibre. This assumption
is consistent with the uncertainty principle applied to the photon along its trajectory. Ac-
cordingly the Heisenberg inequality is saturated, and Ap are constants of the motion.
Correspondingly in terms of the geometry of the universal bubtiterer the projective
Fock spacer : U — PF the trajectory is horizontal it¥, as explained e.g. if23].6 (The
single particle state vector idi@eelectromagnetic field in that the charge-current 4-vector
vanishes inside and outside the fibre optic medium; accordingly it is described by a solution
to the homogeneous Maxwell equations. The field is nevertheless constrained by certain
boundary conditions imposed by the geometry of the fibre.)

Inthe Tomita—Chiao experiment the polarization state does not return to its original value.
Instead, thenomentunof the photon undergoes cyclic evolution, and the geometrical phase
thatemerges provides an example ofdhantum anglef3] that, in the classical limit, reduce
to Hannay’s angleg[28]; cf. [46]).

An arbitrary evolutior)” for the (spatial) directional pelrbf the 4-momentum of the pho-
ton can be generated in terms of its corresponding principal null directioBécfion 5.).

This is achieved via the action of the SU(2) spin operator in the fundamental (i.e%)spin—
representation, denotélzll/z). As T(0) is traversed, as shown Fig. 2, the principal null
spinorv4 satisfies

A
iaaLe =n() - Jav?, (5.15)

wheren(6) is a unit vector defining an instantaneous axis of rotation on the 2-sphere of mo-
mentum directions. This coincides with the Schrédinger evolution of the wave-function
of aspin—% particle in a (unit) magnetic field aligned withConsistently, the Pauli—Lubanski
spin vector of the photost’ = (1/2)ef p” M (M3 = MZ® — xp® + x p®) is aligned
with its 4-momentum (see e.[16]).
Observe that, for a given evolutian there exisinfinitelymany generatons(), as shown
in Fig. 2 This multiplicity can be understood as follows. For the spirbto generate” it
is necessary and sufficient tHat (6) /96 is tangent to the prescribéd ¢ $2. For a given
7, the family of null vectorgv®(9)} is fixed; by energy conservatiofw, is constant and so

6 Indeed if the photon were to exist in some state of definite momentum along the fibre, this would violate the
uncertainty principleAxAp > (1/2)h, since Ax remains bounded by virtue of the geometry of the fibre optic
medium.

7 We assume energy conservation, so thapfoe= (p°; p), p® and|p|? are constants of the motion.
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Fig. 2. Generation of rotation of spacelike 3-momentum of photon in terms of principal null direction decomposition
and exponential action of SU(2) spin operator.

v4 is subject to the freedont® — exp(i¢(0))v4 for real valuedg (underv? — i the
energy density transforms @8y = ¢asda g™ B8 — |A|*Tgo SO energy conservation
implies|x| = 1).

Correspondingly the spinor derivative transforms as

v . it A
™ — exp(ig) ( %0 +i¢'v ) (5.16)
which freedom preserveBs® /0. The relevant geometrical feature here is that the trans-
formed derivativedv /30 is not proportional to its original value, via th# term in the
transformation(5.16) The freedom in the phase functign®) is reflected in that of the
spin operatong () - ?(1/2), determined by the transformati¢®.16)asny = exp(ig)[n —
(1/3)¢/?(1/2)], which generate8v” /30 according tq5.15)

In the Tomita—Chiao experiment, for eafhe 7', the J axis is chosewrthogonalto the
instantaneoup” axis, i.e. within thgx, y)-plane, so that the corresponding circlé=ig. 2
is ageodesicThis property follows from the physical requirement that the tfiady, p)
shown inFig. 2 has zero angular velocity about the instantanesasis, i.e. there is no
torsion. The tangent property and orientatior?ofhen fixesJ uniquely. (A discussion of
this geometry is given ifiL1], although this does not refer to the Tomita—Chiao experiment
explicitly; cf. also Ref. [5] off1].)

The spin wave-function” therefore evolves according to the Schrodireggration (5.15)
such that(H) = 0 for all 6, since thev® spinor axis is orthogonal to the spin operator
(magnetic field) directiom. The evolution therefore coincides with that determined by
the modified Schrédingerquation (3.6)so that4 evolveshorizontallyin 2/ and acquires
the geometric phasgg aroundY". The anti-self-dual electromagnetic spinbkg = v4vp
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therefore acquiresvice this phase 2g, i.e. a phase factor expivg). Its self-dual coun-
terparty 4 p therefore acquires the conjugate factor @x@ivg), since its principal null
spinor vy lies in the conjugate spin spa&y (cf. the factor i in(5.15). A general
polarization state can be writtd#ap) = z|yaB) @ w|¥ap), and so the stereographic
coordinateg = w/z undergoes; — exp(—4ivg)q, which preserves the relative ampli-
tudes of the right-handed (self-dual) and left-handed (anti-self-dual) contributipFig,jo
Accordingly theStokes’ vectorp = /g undergoesp — exp(—2idg)p, and is there-
fore rotated by 2¢ about the axis defined by the helicity eigenstates, i.e. by the solid
anglea subtended byr on the sphere omomentundirections. Sinceq| is preserved,
the eccentricity of the ellipse of polarization is invariant, and its principal axis is rotated
by a.

The case of plane polarization|ig = 1, while pure helicity eigenstates correspond to
g = 0, oo for which the field is said to beircularly polarized. In the circular case, the
transformation of the Stokes vector is degenerate, and not observable at the level of the
single particle Hilbert spack'. Nevertheless Fap) acquires a pure geometric phase factor
exp(£2idg), and therefore the evolution is cyclic L. The associated classical field,
according to Lemma 5.1, therefore acquires a phasecHifideed, in this case, the phase

shift acquired coincides with Berry’s phaﬁé"), as seen e.g. by writing the latter in terms

of the tensor productfi (V4 ® Vg|v4 ® dvg + Vg ® dva) which is equal to 2% The factor
of two here arises from the 2-factor principal null decomposition of the field spinor, and
should be contrasted with the case of the Pancharatham experiment desc8betidn 5.2
for which the solid angle arises on the space of polarization states of the electromagnetic
wave withconstanimomentum (cf. also Eq. (17) et seq[i®]), and instead the phase shift
acquired iS1/2)a.

These results generalize to massless fields of arbitrary spi(il/2)n, as follows. A field
of spins can be decomposed into principal spin vectors asitf@dd symmetric product
YAB..E = MAMB---VE), and in the null casé = 1 = --- = v. In the case of constant
momentum (principal null spinor) the state space is isomorphic to that of %sq;ystem,
and thus for cyclic evolution if?#?, the classical configuration, accordingltemma 5.1
acquires a phase sh%tx, independentf s.

In the case of cyclic evolution in the momentum, the anti-self-dual spinor acquires
a phase factor exp:9g), so that the stereographic coordinate is transformed by
exp(—2ing)q. For arbitrary spin the Stokes’ vector is given py= ¢%/”, which therefore
undergoep — exp(—2idg) p, corresponding to a spatial rotation@t= 29¢, wherew is
the solid angle subtended on the sphere of principal null directigns}.2 The result is
therefore independent of and coincides with the angle of rotation of the triadsig. 2
about thep-axis, when this is parallel propagated aroand

On the other hand, for pure helicity stategs= 0, oo, the evolution is cyclic ifPH?*
and, according tbemma 5.1 the associated classical field undergoes a phasesghFbr
example, in the case of the (yet unobserved) graviton, for whiet®2, we predict a phase
shift 2«. This prediction could in principle manifest itself in a classical phase shift of this

8 In the case of the graviton (see €[g6]) neighboring polarization vectors lie af4 to each other, and the
linearized metriqhxx, hxy) arises as two-fold tensor products of these.
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amount in gravitational wave detection. Such an observation would vindicate the proposed
spin-2 nature of the quantized gravitational field.

6. Conclusions

The main results of the paper are as followsSéttion 2ve have developed the quantum
theory in geometric language and applied this to the space of coherent states for a bosonic
quantum field.Theorem 2.lestablishes the intrinsic Euclidean geometry of the coherent
state manifold in the context of both (single partici€;) quantum mechanics and bosonic
quantum field theory (Fock spacg). Section 3develops the symplectic construction of
the geometric phase in a self-contained manner in terms of the Kahler geometry of the
projective Hilbert space of stateSheorem 3.3establishes the relationship between the
geometric phase and the metrical area of a spanning surface for a given cyclic evolution. In
Section 4the geometric phase construction is applied to the space of coherent states. Using
the result ofTheorem 2.1an expression for the geometric phase for a cyclic evolution with
respect to the coherent state manifold is deriveBrioposition 4.1Comparison with the
corresponding expression for single particle quantum mechanics, derRezfiosition 3.1
yields a surprising and interesting result relating the two phases by the field intensity, which
is provided inProposition 4.2

Section 5provides three illustrations of the geometric phase arising in situations of co-
herent state evolution, in the case of electromagnetism. The purpose of these examples is to
demonstrate the different ways in which ttyelic nature of the evolution can arise. In the
first example the coherent state itself, regarded as an elementmbiketiveFock space,
undergoes cyclic evolution, and spinor expressions for the phase acquired by the (Fock) state
vector are derived. An (incoherent) superposition of two such states, of different intensities,
undergoing cyclic evolution acquires a relative geometric phase, and the transition proba-
bility amplitude between the original and resultant superpositions is calculated explicitly.

In contrast the second example concerns a situation for which the evolution is cyclic in the
singleparticle state spad&#{*. In this case however the coherent state after cyclic evolution
is different to the original state, and the resultant corresponds to the classical phase shift in
an electromagnetic wave described40].

The third example involves a photon (zero rest-mass particle) passing through a medium
such that thenomentunof the particle undergoes cyclic evolution. In this case, in contrast
to the previous two examples, neither the single particle state nor the coherent state are
restored to their original values. The result of such evolution is that the plane of polarization
of the particle is rotated by the solid angle subtended on the sphere of momentum directions.
These results generalize to arbitrary spin, as indicated at the e3ettbn 5

In a more general context, it is worth emphasizing that our results may have significant
consequences in the areas of quantum computation and cryptography, through provision of
the additional ‘qubit’ of informatiordg. In other words, the cyclic evolution of a quantum
state is able to store (some) information about the history of the state, which is encoded
in the phase of the state vector. This could be exploited, for example, in designing more
efficient guantum computing algorithms and in the design of quantum keys.
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