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Abstract

A cyclic evolution of a pure quantum state is characterized by a closed curveγ in the projective
Hilbert spacePH, equipped with the Fubini-Study geometry. It is known that the geometric phase
ϑG for this evolution is given by the integral of the symplectic form of the Fubini-Study geometry
over an arbitrary surface spanningγ. This result extends to an infinite-dimensional Hilbert space for
a bosonic quantum field. We prove thatϑG is bounded above by the infimum area over all surfaces
spanningγ, and that the bound is attained ifγ can be spanned by a holomorphic curve. Using an
earlier result concerning the intrinsic Euclidean geometry of the coherent state submanifoldC, we
derive an expression for the geometric phase for a cyclic evolution amongst coherent states. We
indicate how the intensity of a classical configuration can be inferred from the winding number of
the exponential geometric phase about the origin in the complex plane. In the case of photon states
we present group theoretic and 2-component spinor representations ofϑG. We derive an expression
for ϑG in the case of a sequence of measurements such that the resulting states are coherent at
each step, in terms of a sequence of projection operators. The situation in relation to some earlier
experiments of Pancharatnam and Tomita–Chiao is explained.
© 2003 Elsevier B.V. All rights reserved.

JGP SC:Quantum mechanics

Keywords:Coherent states; Fubini-Study; Geometric phase; Kähler geometry; Photons; Projective geometry;
Quantized fields; Spinors; Symplectic geometry

1. Introduction

Geometric phases in physics have been of theoretical and experimental interest since
Berry introduced the concept of a gauge invariant phase acquired by a quantum system
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undergoing cyclic evolution, in the adiabatic approximation[12]. A precursor of Berry’s
work was due to[40] who introduced a geometric phase for classical electromagnetic fields,
which correspond to coherent states of the quantized electromagnetic field. Berry’s phase
factor was interpreted geometrically as the holonomy of a connection on the parameter
space of the Hamiltonian generating the cyclic evolution[43]. Aharonov and Anandan[1]
and Anandan and Aharonov[8], extended this phase to non-adiabatic cyclic evolutions.
The idea was extended further within the framework ofgeometric quantum mechanics(see
[9,7,21–23,39]), in terms of a connection on a fiber bundle over the projective Hilbert space
and a corresponding group theoretic treatment[3].

The subject of ‘geometric quantum mechanics’[14], introduced in[17,18]and developed
in a physical context by Kibble[30,31], describes the operations of the quantum theory in a
geometrical language, in such a way that all the genuine degrees of freedom of the quantum
system are manifest. This development should be viewed as distinct from geometric quanti-
zation which, in contrast, addresses the question of how to quantize classical systems by car-
rying over the symplectic structure present in their Hamiltonian description into the quantum
domain[46]. In the latter process certain ambiguities arise, in the introduction of the metri-
cal and associated complex structures that characterize a quantum system, but nevertheless
certain natural quantization procedures have been found for specific kinds of systems.

Geometric quantum mechanics, on the other hand, may be viewed as the inverse construc-
tion. The approach taken here is to begin with a quantum mechanical system, equipped with
dynamical (i.e. symplectic) and metrical structures with respect to some Kähler manifold
K, and attempt to formulate the operations of quantum theory in geometrical language. One
then obtains a certain ‘classical limit’ by analyzing the space of coherent states, which are
the preferred class of states from which an ancestral classical configuration can be derived
in the form of the solution to some classical field equation, e.g. Maxwell’s equations.

The state space that we shall consider throughout is complex projective spaceCP
n,

arising from the space of rays in the Hilbert spaceH of complex dimensionn+ 1. In this
way the geometrical description passes from the usual Hilbert space description to one in
terms of the projective Hilbert spacePH = CP

n, with respect to which the dynamical and
probabilistic aspects of the standard quantum theory can be represented. This subject has
been developed by a number of authors in a variety of contexts. In particular the geometric
formulation for a finite-dimensional quantum system was generalized by Field[22], Field
and Hughston[23] to the field theoretic context, where the relevant Hilbert space isFock
spaceF (see e.g.[24,45,46]). In this situation the coherent states have a special role and
their geometry has been studied in detail[6,23]. The more general state spacesK have
been studied in the literature (e.g.[19,25,31]), and recently in the context of stochastic
state reduction models (see e.g.[15] and citations therein). The results that follow on the
geometric phase may hold to some extent in these more general cases also, but we shall not
pursue this question here.

In our discussion we shall not confine ourselves to Berry’s phase and its generalizations.
In this respect there are essentially two distinct notions of the geometric phase, namely
Berry’s original phase, and the quantum angles[3] that in the classical limit reduce to the
angles of Hannay[28]. These angles are important in relating the geometric phase acquired
by a single particle to the corresponding geometric change of a coherent state that has an
uncertain number of particles.
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In our discussion we illustrate this distinction by means of the experiments of[40,44].
The paper is organized as follows. InSection 2we first review the necessary background

to the geometric formulation of quantum field theory, and describe the special role of the
submanifold of coherent states and the geometrical features that emerge. A geometric con-
struction that generalizes the Berry phase to the non-adiabatic case is provided inSection 3
and various examples are discussed.

This is specialized inSection 4to cyclic evolutions that lie within the coherent state
submanifoldC, for which knowledge of the intrinsic geometry ofC is exploited to yield a
general expression for the geometric phase.

In Section 5we provide examples of the geometric phase in three situations of electro-
magnetism, for systems described in quantum electrodynamics (QED) by coherent states.
The first example concerns the cyclic evolution of a quantum system amongst coherent
states described by a closed curve inC, and applies to the SL(2,C) spinor representation of
the quantum mechanical inner product to yield a general expression for the geometric phase.
Our second example discusses an experimental situation involving a discrete sequence of
measurements resulting in coherent states, such that the evolution is cyclic in the single
particle state spacePH1, and open inC. As a special case we recover the classical result due
to [40] for the phase shift in an electromagnetic wave passing through a sequence of polar-
izers, with identical initial and final polarizations, within the photon description of QED. In
the third example we discuss a fibre optic experiment[44] for which the evolution is cyclic
on the 2-sphere of momentum directions of the photon, in the QED description, and yet
open inPH1 andC. The resulting rotation of the polarization vector of the photon provides
an example of the quantum angles[3], which in the classical limit reduce to the classical
angles of Hannay, and the relationship between this notion and Berry’s phase is explained.
We conclude inSection 6with a review of the main results and the essential features of
the physical examples discussed, and comment on the wider physical implications of the
geometric phase for coherent states.

We shall adopt the abstract index notation throughout, as explained e.g. in[41], except
where otherwise indicated by a bold rather than italicized index. In cases where the Dirac
‘ket’ notation is used[20], state vectors in thesingleparticle Hilbert spaceHwill be denoted
|·〉, whilst vectors in Fock space are distinguished by thedoubleright angular bracket, thus
|·〉〉 ∈ F. Throughout, we maintain the distinction between statevectors, and their associated
rays in Hilbert space which we refer to asstates. Many of the background mathematical
aspects (e.g. geometric phase, isometries, Hamiltonian flow, etc.) of the paper are covered
in [35].

2. Geometric quantum theory

We shall now review some basic concepts of the geometry of quantum theory. The state
manifoldM for an (n + 1)-dimensional quantum system consists of the rays inC

n+1,
which we denoteCP

n, complex projectiven-space. ThusM has the structure of a Kähler
manifold[33], and comes equipped with a symplectic tensorΩab and Fubini-Study metric
gab, both of which are Hermitian with respect to the complex structureJba , which satisfies
Jba J

c
b = −δca, whose eigenspaces serve to define the spaces of (anti-)holomorphic tangent
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vectors onM. In addition to the Hermitian property the symplectic and metrical structures
are related by the complex structure according toΩab = Jcagbc. Thiscompatibilityimplies
that the symplectic tensorΩab with its indices raised via the (inverse) metricgab is inverse
to Ωab, thusΩabΩcb = δac . The complex structure enables one to decompose a given
vector asψa = ψα⊕ ψ̃α′ , whereψα, ψ̃α′ lie in the±i (holomorphic and anti-holomorphic)
eigenspaces ofJ respectively. For a real vector,̃ψα′ is equal to the complex conjugate
of ψα. In the case of a relativistic quantum field this provides the splitting of the field
into its positive and negative frequency parts. In this representation the various relations

above imply that the complex structure has the formJβα = iδβα, Jβ
′

α′ = −iδβ
′

α′ , and that the
symplectic structure and metric are related byΩαβ′ = igαβ′ , Ωα′β = −igα′β, wheregαβ′ is
itself Hermitian as a complex valued matrix (see e.g.[23] for a more detailed account of
these aspects of the geometry of the state space).

In this geometrical language theSchrödinger equationbecomes

dψa = 2Ωab∇bH dt, (2.1)

where the observable functionH arises as the expectation of the Hamiltonian operator
according toH = 〈ψ|Ĥ |ψ〉/〈ψ|ψ〉. Writing ξa = dψa/dt, we deduce from(2.1) that
∇cξa = 2ΩabHbc. Thus, by the Hermitian property of the Hamiltonian with respect to the
complex structureHab = JeaJ

f

b Hef, andJab J
b
c = −δac , we see thatξa satisfiesKilling’s

equation, ∇(aξb) = 0. Accordinglyξa generates isometries of the state space, with respect
to the Fubini-Study metric. This corresponds to the well-known unitary evolution in the
Hilbert space.

In the field theoretic context we represent a general state vector as an element ofFock
spaceF:

|ψ〉〉 = (ψ,ψα,ψαβ, . . . ) ∈ F, (2.2)

whereψα ∈ H1,ψαβ ∈ H2, etc.,Hn is then-particle Hilbert space[45] and the constituent
tensors are symmetric, anti-symmetric for bosonic and fermionic fields respectively. The
squared Hilbert space norm of a vector|ψ〉〉 ∈ F is then evaluated according to

〈〈ψ|ψ〉〉 = ψψ̄ + ψαψ̄α + ψαβψ̄αβ + · · · . (2.3)

For a bosonic field, the creation and annihilation operators, acting on|ψ〉〉 ∈ F, are defined
according to

Ĉασ
α|ψ〉〉 = Ĉ(σ)|ψ〉〉 = (0, σαψ,

√
2σ(αψβ),

√
3σ(αψβγ), · · · ), (2.4)

Âασ̄α|ψ〉〉 = Â(σ̄)|ψ〉〉 = (ψµσ̄µ,
√

2ψµασ̄µ,
√

3ψµαβσ̄µ, · · · ) (2.5)

and satisfy the commutation relations [Âα, Ĉβ] = δαβ. In terms of the (Hermitian) field and

momentum operatorŝΦ, Π̂ the annihilation operator is given bŷA(x) = Φ̂(x) + iΠ̂(x)

and the above commutation relations are equivalent to the canonical commutation relations
[Φ̂(x), Π̂(x′)] = iδ(x− x′) wherex, x′ denote points in spacetime.

We consider theuniversal bundle(see e.g.[26]) U over the projective Hilbert spacePH,
with projection� : U→ PH, defined so that the fibre above any element ofPH is the ray
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in the Hilbert spaceH that it represents. A tangent vector d|ψ(λ)〉/dλ can be decomposed
into horizontal and vertical parts respectively by

d

dλ
|ψ(λ)〉 = δ

dλ
|ψ(λ)〉 + D

dλ
|ψ(λ)〉 (2.6)

with vertical part

D|ψ(λ)〉 = 〈ψ(λ)|d|ψ(λ)〉
〈ψ(λ)|ψ(λ)〉 |ψ(λ)〉 (2.7)

(cf. [6]). TheFubini-Studymetric on theprojectiveHilbert spacePH is then determined by
the horizontal tangent vector according to

ds2 = 4
〈δψ(λ)|δψ(λ)〉

〈ψ|ψ〉 = 4

{ 〈dψ|dψ〉
〈ψ|ψ〉 − 〈ψ|dψ〉〈dψ|ψ〉〈ψ|ψ〉2

}
, (2.8)

where the second equality follows from(2.6). In homogeneous coordinatesψα on CP
n,

(2.8)becomes

ds2 = 8
ψα dψβψ̄[α dψ̄β]

(ψγψ̄γ)2
. (2.9)

An identical argument applies in the case of Fock space for which|ψ〉〉 ∈ F.

2.1. Geometry of coherent states

Thecoherent state vectors{|ψc〉〉 ∈ F}, for a bosonic field, are generated via the expo-
nential mapE : |ψ〉 �→ |ψc〉〉 (cf. [24]) according to

|ψc〉〉 = exp(ψαĈα)|0〉〉 = (1, ψα, ψαψβ/
√

2!, . . . , ψαψβ · · ·ψδ/
√
n!, . . . ) (2.10)

and have normalization〈〈ψc|ψc〉〉 = exp(〈ψ|ψ〉). Observe that a coherent state vector
depends on the choice of phase and amplitude of the underlying single particle state vector
ψα ∈ H1, according to(2.10). The exponentiation(2.10)can be regarded as a mappingE
from the universal bundle into Fock space,E : U→ F, which is non-constant along each
fibre�−1(s) for all single particle statess ∈ PH1.

From(2.10)the actions of̂Aα, Ĉβ on |ψc〉〉 are

Âα|ψc〉〉 = ψα|ψc〉〉 ↔ 〈〈ψc|Ĉα = 〈〈ψc|ψ̄α, (2.11)

Ĉα|ψc〉 = d|ψc〉〉
dψα

↔ 〈〈ψc|Âα = d〈〈ψc|
dψ̄α

(2.12)

which define the space of coherent states (e.g.[32]). Observe from(2.11) that coherent
states are eigenstates of the annihilation operator.

The calculation of the geometric phase for a coherent state evolution, to follow in
Section 4, requires the following result, due (in the case of single particle quantum me-
chanics,H1) to [6], and generalized to a quantum field (Fock spaceF) by Field[21,22]and
Field and Hughston[23].
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Theorem 2.1. The Fubini-Study metric induced on the coherent state submanifoldC is
intrinsically flat. Moreover the Hilbert space vectorsψα ∈ H provide (complex valued)
Euclidean coordinates forC.

Proof. We provide two independent derivations of this result for a bosonic quantum field.
Firstly we demonstrate how an earlier treatment due to[6] for single particle (H1) quantum
mechanics generalizes to Fock space, and secondly we outline the proof of the result within
the context of abstract Fock space given previously in[21–23].

(a) For ann-dimensional harmonic oscillator the contribution to the coherent state in the
product expansion is the Gaussian wave-packet with wave-function (see e.g.[6,32]):

ψ̃qi(s),pi(s)
(x) = [2π(&q)2]−n/4 exp

(
− (x − q(s))2

(2&q)2
+ i

h̄
p(s) · x

)
(2.13)

which is normalized so that〈ψ̃|ψ̃〉 ≡ 1. Applying∂/∂qi to the normalization condition
we find〈ψ̃|xi|ψ̃〉 = qi, whereupon∂/∂qj leads to〈ψ̃|xixj|ψ̃〉 = δij (&q)

2+qiqj. From
(2.13)the differential of the normalized coherent state vector is given by

|dψ̃〉 =
(
− q · dq

2(&q)2
+ x ·

(
dq

2(&q)2
+ i

h̄
dp
))
|ψ̃〉. (2.14)

Thus i〈ψ̃|dψ̃〉 = −q ·dp/h̄, together with〈dψ̃|dψ̃〉 = dq2/4(&q)2+(&q)2 dp2/h̄2+
(q · dp)2/h̄2. The squaredhorizontaldifferential is therefore given by〈δψ̃|δψ̃〉 =
dq2/4(&q)2 + (&q)2 dp2/h̄2. Using the Heisenberg relation&q&p = (1/2)h̄, the
metrical line element induced onC is therefore

ds2 = dq2

(&q)2
+ dp2

(&p)2
. (2.15)

In quantum field theory (e.g. QED) we have� = ∏∞
I=1ψI where I indexes an

individual oscillator mode and eachψI is a Gaussian wave-function of the above form
([32]; cf. also[46]). Accordingly the above expression for the line element induced
onC becomes summed over allI and the flatness property is preserved.

(b) In Fock spaceF [21–23]we demonstrate thatC is intrinsically flat independently of
the choice of representation forψα ∈ H.1 This argument extends the result to the case
of interacting fields. We assume only the commutation relations for the creation and
annihilation operators, [̂Aα, Ĉβ] = δαβ, and the defining relations(2.11) and (2.12).

For an interacting Lagrangian̂Aα andĈβ are modified; nevertheless the fundamental
algebraic commutation relation between the properties(2.11) and (2.12)are preserved.
The particle concept then emerges asymptotically for free fields.

The Fubini-Study metric on projectiveFockspacePF is identical to(2.8)with |ψ〉
replaced by|ψ〉〉 ∈ F. Let |ψ〉〉 ∈ F denote the Fock state vector that is coherent
with respect toψα ∈ H according to(2.10). From (2.12) we find 〈〈dψ|dψ〉〉 =
dψ̄βdψα〈〈ψ|ÂβĈα|ψ〉〉. Applying the CCR [̂Aα, Ĉβ] = δαβ this becomes(dψα dψ̄α+

1 The latter references should be consulted for two other independent proofs of this result in the context of Fock
space.
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ψ̄αψ
β dψα dψ̄β)〈〈ψ|ψ〉〉. Similarly 〈〈ψ|dψ〉〉 = 〈〈ψ|Ĉα|ψ〉〉dψα = 〈〈ψ|ψ〉〉ψ̄α dψα

and therefore the induced line element onC reduces to thecomplex Euclideanform,
parameterized byψα ∈ H1,

ds2 = 4 dψα dψ̄α. � (2.16)

3. Symplectic construction of the geometric phase

Let P denote the relevant quantum state spacePH or PF as appropriate to the context.
In the non-adiabatic case, for an arbitrary quantum system that undergoes the cyclic evo-
lution γ ⊂ P, the geometric phase may be characterized by the following gauge invariant
symplectic integral inP,

ϑG[γ] =
∫
S⊂P

Ω, (3.1)

whereS spansγ [5,6]. Closure of the symplectic 2-formΩ ensures that the integral is
independent ofS. This geometrical invariant can be re-expressed in more familiar Dirac
notation, as a line integral, as follows.

Proposition 3.1.

ϑG[γ] = i
∮
γ̃⊂H

〈ψ̃|dψ̃〉
〈ψ̃|ψ̃〉 , (3.2)

where|ψ̃〉 undergoes cyclic evolution inH such that�[γ̃] = γ ⊂ P. A corresponding
result holds for|ψ〉〉 ∈ F. The result is independent of the choice of liftγ̃ provided this is a
closed curve inH.

Although this result is well known (e.g.[4]), we shall give now a new proof of the
equivalence between(3.1) and (3.2).

Proof. The Fubini-Study metric onCP
n has Kähler potential (e.g.[16,37]):

K = 4 log(ψαψ̄α), (3.3)

where{ψ�} serve as homogeneous coordinates onCP
n. Writing the holomorphic exterior

derivative∂ = (∂(·)/∂ψα)dψα∧ we find

∂̄K = 4
ψα dψ̄α

ψγψ̄γ

(3.4)

and thus

∂∂̄K = 4

(
δαβ

ψγψ̄γ

− ψαψ̄β

(ψγψ̄γ)2

)
dψβ ∧ dψ̄α. (3.5)
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The symplectic 2-form is thenΩ = i∂∂̄K (which is real since the anti-commutator{∂, ∂̄}
vanishes) can be writtenΩ = id(∂̄K). Stokes’ theorem applied to(3.1) yields (3.2) as
required. �

Observe that the right-hand side of(3.2) is equivalent to the same expression (cf.[39])
with a term〈dψ̃|ψ̃〉 subtracted in the numerator of the integrand, and factor of two in the
denominator, since the difference between the two expressions involves

∮
d log〈ψ|ψ〉which

vanishes owing to the single valued nature of the inner product〈·|·〉.
Proposition 3.1has the following well-known consequence (cf.[38]).

Corollary 3.2. The geometric phaseϑG defined by(3.1) is equal to the phase acquired
by a state vector|ψh〉 ∈ H whose evolution is horizontal inU and whose associated ray
undergoes cyclic evolutionγ ⊂ PH. In other words, ϑG is the holonomy aroundγ of
the connection on the principal fibre bundleU, defined so that the horizontal sections are
generated by the horizontal vectors|ψh〉 ∈ H according to(2.6).

Proof. Write |ψ̃(t)〉 = exp(iα(t))|ψh(t)〉 for α(t) ∈ C, so that|ψh〉 acquires the fac-
tor exp(−i&α) aroundγ. From the identity|dψ̃〉 = exp(iα)[|dψh〉 + i|ψh〉dα] we de-
duce 〈ψ̃|dψ̃〉/〈ψ̃|ψ̃〉 = i dα. From (3.2), therefore, we findϑG = −&α, and so|ψh〉
acquires exp(iϑG) aroundγ, as required (&α and thereforeϑG are real since〈ψh|ψh〉 =
exp(2Iα)〈ψ̃|ψ̃〉 and〈ψh|ψh〉 is constant by the horizontal property). �

Thus, for example, a state vector that satisfies the (non-linear) modified Schrödinger
equation, introduced in[31]:

i
d|ψ〉
dt

= (Ĥ − 〈Ĥ〉)|ψ〉 (3.6)

satisfies these conditions. This equation is non-linear on the state space, although it is
linear along any given unitary trajectory on Hilbert space. In respect ofCorollary 3.2we
remark on the Pancharatnam ‘in-phase’ criterion[10,40]according to which a pair of state
vectors|α〉, |β〉 are in-phaseif their superposition has maximum intensity amongst all
superpositions of the form|α〉 + exp(iθ)|β〉, i.e. 〈α|β〉 is real and positive. A horizontal
evolution|ψh(t)〉 therefore has the property that, infinitesimally, neighboring state vectors
|ψh(t)〉 and |ψh(t + dt)〉 are in-phase. On integrating aroundγ, however,|ψh〉 acquires
a global phase shift. In this way it is thenon-transitivityof the Pancharatnam in-phase
criterion that gives rise to the geometric phase.

In connection with the expression(3.1) for the Berry phase we observe the following
general result which relates the symplectic construction to the metrical geometry.

Theorem 3.3. The geometric phase is bounded above according to

ϑG[γ] ≤ inf
S

[A(S)], (3.7)

where A denotes the area functional with respect to the Fubini-Study metric, and S spans
γ. Equality is attained if and only if there is an S that is a holomorphic curve spanningγ.
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Proof. Given a Kähler manifoldK, and a closed curveγ ⊂ K the integral of the Kähler
symplectic form over a real 2-surfaceS ⊂ K spanningγ is less than or equal to the area
of this surface as measured by the induced metric. The equality holds if and only ifS is a
holomorphic curve with respect to the complex structureJba of K, i.e. a one-dimensional
complex manifold whose tangent space is spanned by holomorphic tangent vectorsT a

satisfying the eigen-propertyJab T
b = iTa [34].2 The result then follows by(3.1)and letting

K ∼= CP
n equipped with the Fubini-Study geometry. �

In the context of spin-12 systems the theorem has the following elementary consequence.

Corollary 3.4. For a spin- 1
2 system, for which the relevant state space isCP

1, the curve
γ can be spanned by a holomorphic curve given by one of two surfaces on the Riemann
sphere bounded byγ.3 Accordingly the metrical Fubini-Study area is equal to the integral
of the symplectic2-form. For an(n+ 1)-dimensional quantum system, the eigenstates of a
time independent Hamiltonian are fixed points of the unitary motion defined by(2.1)and,
by linearity, the projective line L joining a pair of distinct eigenstates is also invariant. Thus
all γ ⊂ L generated by Schrödinger evolution are spanned by holomorphic curves, and
therefore equality is obtained inTheorem 3.3.

A more sophisticated example is provided by a system containing two interacting spin-1
2

particles[14]. In this case the relevant state space isCP
3, and there exists a preferred (total)

spin-0 stateZ with orthogonal hyperplanēZ consisting of all states of total spin 1. The
disentangled states form a 2-quadricQ which intersects the spin-1 plane in a conicC,
consisting of all spin-1 statesP with definite spin direction. For a givenP ∈ C the stateP ′
with opposite spin is obtained as the intersection ofC and its tangent̄P that is defined as
theCP

1 orthogonal to the stateP . The spin-0 stateO is then obtained as the intersection of
the pair of tangents toC atP , P ′ thus generating the spin-1 tripletP,O,P ′. This situation
is shown inFig. 1. In relation to the theorem above, for eachγ ⊂ C, the geometric phase
ϑG is given by the minimal spanning area (cf.[29] for a discussion of the geometry ofFig. 1
in the context of quantum mechanical measurement).

In the general case ofTheorem 3.3, consider two independent HamiltoniansH(i), whose
Hamiltonian flows generateS according to the Schrödinger equations:

dψa
(i) = Ωab∇bH(i) dt(i). (3.8)

Recall the relation[9]:

s =
∫ Q

P

(gab dψa dψb)1/2 = 1

h̄

∫ Q

P

&H dt (3.9)

which relation is independent of the Hamiltonian, and is a gauge invariant expression with
the physical interpretation that the state space distance provides a measure of the uncer-
tainty in the Hamiltonian generating the evolution. We have seen that the gauge invariant

2 The authors are grateful to Ralph Howard for this reference.
3 The choice of surface is not physically significant since the two possibilities amount to solid angles on the

sphere ofφ and 4π − φ (counted with opposite orientation), leaving exp(iϑG) invariant.
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Fig. 1. System of two interacting spin-1
2 particles.

symplectic integral(3.1)manifests itself as Berry’s phase for a cyclic evolution inP, and in
Section 6we shall illustrate how this is physically observable via the principle of quantum
superposition.

Likewise, themetrical areais manifestly gauge invariant and so admits a physical inter-
pretation, as follows. An infinitesimal element of area is given byδA = |dψ(1)||dψ(2)| sinθ
(ψ(i) normalized) whereθ is the angle between the two state differentials with respect to the
intrinsic geometry ofS induced from the Fubini-Study metric. From(3.9)we have|dψ(i)| =
&H(i) dt(i) together with the inner product relation dψa

(1) dψa(2) = ∇aH(1)∇aH(2) dt(1) dt(2),
which follows from(3.8). Thus we find

cosθ = (∇aH(1))(∇aH(2))

&H(1)&H(2)
. (3.10)

The metrical areaA generated by the pair of Hamiltonian flows is therefore given by

A =
∫∫

S

√
(&H(1))2(&H(2))2− (∇aH(1)∇aH(2))2 dt1 dt2. (3.11)

(This area could, if desired, also be expressed in terms of the invariant volume measure
on S according to

∫∫
S
[detg(S)ab ]1/2 dt1 dt2.) The commutator [̂H1, Ĥ2], in general, has an

independent role from the metrical area, as follows. From(3.8), and the inverse property
ΩabΩ

ac = δcb, we haveΩab dψa
(1) dψb

(2) = Ωab∇aH(1)∇bH(2), which is equal to the com-

mutator expectation function〈[Ĥ(1), Ĥ(2)]〉 (see e.g.[29]). Thus∫∫
S

Ωab dψa
(1) dψb

(2) =
∫∫

S

〈[Ĥ(1), Ĥ(2)]〉dt1 dt2 (3.12)

and thusthe symplectic integral coincides with the integral of the commutator function of the
Hamiltonian operators generatingS. Similarly for the metric, the compatibility property
impliesgabΩ

acΩbd = gabJcaJ
d
b , and by the Hermitian property ofgab with respect toJ , this
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is equal togcd. Thus from(3.8)the integral of theJordan product(i.e. the anti-commutator)
is given by the expression corresponding to(3.12)with Ω replaced byg. Thus∫∫

S

gab dψa
(1) dψb

(2) =
∫∫

S

〈{Ĥ(1), Ĥ(2)}〉dt1 dt2. (3.13)

As an illustration of this geometry where the state space isCP
1, consider a spin-12 system

for which S is generated bŷH(1) = σz, Ĥ(2) = σx whereσi are the SU(2) Pauli matrices.
The commutator is then [̂H(1), Ĥ(2)] = 2iσy, and a spin wave-function can be written, with
respect to thez-axis, as

|ψ〉 =
(

cos1
2θ

sin 1
2θ exp iϕ

)
,

whereθ, ϕ are standardz-polar coordinates. According toCorollary 3.4the quantities(3.11)
and (3.12)coincide for this case, and(3.12)can be verified as follows. A point on the sphere
can be represented by the Cartesian vectors:

r = ( sinθ cosϕ, sinθ sinϕ, cosθ) = ( cosθ(x), sinθ(x) cosϕ(x), sinθ(x) sinϕ(x))

(3.14)

in z, x-polars respectively. From the relation|dψ(i)| = &H(i) dt(i) and the uncertainties
&H(i) = sinθ(i) we deduce thatt(i) are angular parameters, so that dt(i) = dϕ(i). The
commutator function of the generating Hamiltonians is〈[Ĥ(1), Ĥ(2)]〉 = 2i sinθ sinϕ and
so integrand of the right-hand side of(3.12) is equal to 2i sinθ sinϕ dϕ(x) dϕ. As ψ(x)

changes for fixedθ(x) we have the geometrical identity dϕ(x) sinϕ = dθ.4 The left-hand
side of(3.12)is the volume form sinθ dθ dϕ onS, which establishes(3.12)in the case of
this example.

4. Geometric phases for coherent states

Our purpose in this section is to illustrate how to apply the symplectic construction of
the geometric phase above to the submanifold of coherent statesC. In doing so, we shall
apply the results concerning the intrinsic geometry ofC, as supplied byTheorem 2.1.

The results of this section will assume that the state remains as a coherent state during
the quantum evolution. This assumption is valid in the following three physical situations.
If the field is ‘classical’ then it remains ‘classical’, i.e. a coherent state. This is the case with
the experiments of[40] on classical electromagnetic waves. ‘Classical’ here means that the
expectation value of the number operator is very large. Second, even a single particle may
remain as a coherent state (Gaussian state) if a dense sequence of suitable measurements are
made, as shown by Aharonov and Vardi[2]. Finally, a harmonic oscillator that is initially in a
Gaussian or coherent state continues to remain in such a state during Schrödinger evolution.

4 This can be shown e.g. by projecting a line element dψ(x) onto thex, y plane and calculating the length of its
radial component. In terms of thex-azimuth this yields dϕ(x) sinθ(x) sinϕ(x) sinϕ, which can also be measured as
dθ cosθ, from which the identity follows using(3.14).
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The integral of the symplectic 2-formΩ = Ωαβ′ dψα ∧ dψ̄β′ over an open 2-surfaceS
spanning the given closed curveγ is independent ofS, by virtue of Stoke’s theorem and
the closure ofΩ. Thus for a cyclic evolution amongst coherent states described by a closed
curveΓ ⊂ C we may restrict the spanning surfaceS to lie within C in order to calculate
the phase(3.2). Thus for a closed curve inC we haveϑG =

∫∫
S
Ω(C), whereΩ(C) can be

taken as the induced symplectic form onC. Theorem 2.1implies thatΩ(C) is identical to the
symplectic formΩ(H) on the single particle Hilbert spaceH, which is complex Euclidean.
(The symplectic tensorΩαβ′ = igαβ′ on the ambient spacePF, evaluated at a pointP ∈ C, is
distinct from that determined by(2.16), but reduces to this Euclidean form when evaluated
on tangentvectors toC, such as in the present case whereS ⊂ C.) SinceΩ(H) is a closed
2-form on the Kähler manifoldH, the open 2-surface integral can be transformed, via
Stokes’ theorem (see e.g.[33]), to the closed line integral:

ϑG =
∮
γ̃

Ω
(H)
ab ψa dψb, (4.1)

whereΓ is parameterized by the closed curveγ̃ ⊂ H1. (This follows from the exactness
relationΩ = d(Ω(H)

ab ψa dψb).) In Dirac notation, the integrand above can be expressed as
2I〈ψ|dψ〉 and so we have the following result (cf.[2]).

Proposition 4.1. For a cyclic evolution amongst coherent statesΓ ⊂ C parameterized by
a closed curvẽγ = {ψα(s)} ⊂ H1 according to(2.10), the geometric phase acquired by
the coherent state vector|ψc〉〉 is given by

ϑG = 2I
∮
γ

〈ψ|dψ〉, (4.2)

where|ψ〉 has free normalization over̃γ andI denotes the imaginary part. For a field of
constant intensity, 〈ψ|ψ〉 = k, and therefore the corresponding expression holds withI on
the right-hand side of(2.10)replaced by a factor−i.

CombiningPropositions 3.1 and 4.1, therefore, we obtain the following correspondence
between the geometric phases for cyclic evolutions in the single particle state space and the
coherent state submanifold.

Proposition 4.2. Given a cyclic evolution amongst single particle statesγ ⊂ PH1 and
a corresponding coherent state evolutionΓ ⊂ C parameterized by the closed curveγ̃ =
{ψα(s) ∈ H1} according to(2.10), such that�[γ̃] = γ, and of constant intensity〈ψ|ψ〉 =
〈ψ|N̂|ψ〉 over γ̃, the geometric phases onPH1 andC are related by

ϑG(Γ ) = 〈ψ|ψ〉ϑG(γ). (4.3)

Thus, for a coherent state evolution such that the expectation of the total number operator
is unity, these two phases coincide.

Proposition 4.1shows that the phaseϑG, in addition to its significance modulo 2π, contains
information as to the field intensityΛ ∈ R, through its absolute value. For consider a family
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of closed curves{ΓΛ} ⊂ C parameterized by the expectation of the total number operator
〈N̂〉 = Λ, i.e.ΓΛ(θ) = exp(Λ1/2ψα(θ)Ĉα)|0〉〉 for a prescribed closed curve{ψα(θ)} ⊂ H
satisfying〈ψ|ψ〉 = 1.Proposition 4.1implies thatϑG(Λ) = ΛϑG(1), i.e. for a given closed
curve inPH the geometric phase acquired by the associated evolution inC isproportional to
the field intensity. AsΛ→ 0 the curveΓ ⊂ C contracts to the vacuum|0c〉〉 and correspond-
inglyϑG(Λ)→ 0. In general, the coherent state vector acquires a phase factor exp(iΛϑG(1))
as a result of cyclic evolution aroundΓ ⊂ C. This establishes the following result.

Corollary 4.3. LetW denote the winding number of the locuszΛ = {exp(iλϑG(1)) ∈
C|0 ≤ λ ≤ Λ} about the origin in the complex planeC. Then the field intensityΛ is related
toW according toΛ � 2π|W|/ϑG(1). Equality is attained if and only ifΛϑG(1) = 2πn
for integern.

5. Electromagnetic manifestation of geometric phases

We consider three examples of geometric phase involving coherent states of the elec-
tromagnetic field. First, using the state space geometry we have described, we present a
general (spinor) formula for the Berry phase acquired for a cyclic evolution that is described
by a closed curve inC.

In the second example we explain a classical experiment due to[40], involving a plane
polarized ‘classical’ electromagnetic wave passing through a sequence of polarizers, whose
QED description is such that the evolution is cyclic in the projective single particle Hilbert
spaceP and the system remains in coherent states. This is generalized to an arbitrary cyclic
evolution inP, arising from a discrete sequence of measurements.

Thirdly, we study an example of[44] involving the passage of a photon, in a coherent
state, through a fibre optic medium. In this case the evolution is cyclic with respect to the
principal null direction of the underlying null electromagnetic field, whose principal spinor
specifies the momentum direction of the photon. In this case a certain geometric phase,
distinct from Berry’s phase and akin to the classical angles of Hannay, emerges.

5.1. Cyclic evolution with respect to coherent state manifold

The electromagnetic field is described in the 2-component spinor formalism byFab =
ψABεA′B′ + ψ̄A′B′εAB, and the associated energy momentum is given by the spinor product
Tab = ψABψ̄A′B′ [41]. (The field tensorFab is real valued since the photon is its own antipar-
ticle.) The condition that the momentumpa = Tabt

b be a null vector, or equivalently that
the photon have a well defined momentum direction, can be expressed by the requirement
that the field spinor benull, i.e.ψAB = νAνB. For supposeψAB = kµ(AλB), k �= 0, with
µA, λA scaled so thattaµa = taλa = 1 (µa = µAµ̄A′ and likewise forλ). Thenpa is given
by

pb = |k|2(t · µ)λb + (t · λ)µb + (tAA′λAµ̄A′)µBλ̄B′ + (tAA′ λ̄A′µA)µ̄B′λB (5.1)

and therefore

papa = 2|k|2λaµa(1− |tAA′λAµ̄A′ |2). (5.2)
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Thuspa is null if and only ifλ ∝ µ, i.e. the fieldψAB is null (e.g., choose a basis such that

ta = (1,0,0,0), tAA′ =
(

1√
2

)(
1 0
0 1

)

and alignλa along thez-axis so thatλA = (λ0,0). ThustAA′λAµ̄A′ = λ0µ̄0′/
√

2 which,
together with the normalizationstaµa = taλa = 1, impliesµ1 = 0 so thatµA ∝ λA).
In other words, for a photon of the quantized electromagnetic field to be in a state of
definite momentum, the associated electromagnetic field, given by the expectation of the
field operator, hascoincidentprinciple null directions[41]. In this case it is straightforward
to verify that the momentum of the photon lies along the direction of the future pointing
null vectorνa ↔ νAν̄A

′
.

To calculate the geometric phase explicitly we require a gauge invariant expression for
the quantum mechanical inner product〈·|·〉 for a spin-1 zero rest-mass field that is ex-
pressed directly in terms of the principal field spinorφAB. In the electromagnetic case
such an expression first appears (in vector-tensorial form) in[27], and was subsequently
generalized to massless bosonic fields of spins 0,1,2 in[22], in terms of 2-component
spinors.

Consider a single photon state described by the positive frequency fieldF
(+)
ab ∈ H(+),

with left/right-handed decompositionF(+)
ab = φ

(+)
AB εA′B′ + φ̃

(+)
A′B′εAB, whereφ(+)AB andφ̃(+)

A′B′
areindependentpositive frequency fields. The expression for the quantum mechanical inner
product between a pair of such fields[22,27] is

〈φ|ψ〉 = 1

2π2

∫∫
Σ(x)×Σ(y)

ψ
(+)
AB (y)φ̃

(−)
A′B′(x)+ ψ̃

(+)
A′B′(y)φ

(−)
AB (x)

(xc − yc)(xc − yc)
d3ΣAA′

(x) ⊗ d3ΣBB′
(y) .

(5.3)

With regard toProposition 4.1we deduce that the geometric phase forΓ ⊂ C is given by

ϑG = 1

π2
I

∮
γ̃⊂H

×



∫∫

Σ(x)×Σ(y)

left helicity︷ ︸︸ ︷
ψ̃
(−)
A′B′(x)δψ

(+)
AB (y)+

right helicity︷ ︸︸ ︷
ψ
(−)
AB (x)δψ̃

(+)
A′B′(y)

(xc − yc)(xc − yc)
d3Σa

(x) ⊗ d3Σb
(y)



.

(5.4)

In the case of a left-handed electromagnetic field, in a coherent state with a definite mo-
mentum direction, we obtain5

ϑG = 2

π2
I

∮
γ̃⊂H

∫∫
Σ(x)×Σ(y)

ν̄A′(x)ν̄B′(x)νA(y)δνB(y)

(xc − yc)(xc − yc)
d3Σa

(x) ⊗ d3Σb
(y), (5.5)

5 The scalar propagator(xa − ya)(xa − ya) arises from the frequency splitting in the quantum mechanical inner
product, as described in[22,27].
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whereν = ν(+), ψAB = νAνB andγ̃ is the horizontal lift ofγ ⊂ P, i.e. γ̃ = �−1
h [γ] ⊂ U.

For example, consider rotation ofνA about thez-axis, generated by a fixed̂Jz:

νA(x, ϕ) = α(x)


 cos1

2θ exp
(
−1

2iϕ
)

sin 1
2θ exp

(
1
2iϕ
)

 (5.6)

where the scalar functionα(x) reflects the spacetime degrees of freedom ofψAB and is
positive frequency. The spinorνA rotates with respect to the azimuthϕ according to

δνA = −1

2
iν̂Aδϕ, ν̂A =

(
ν0

−ν1

)
. (5.7)

From(5.5), therefore, we find

ϑG = − 1

π2
I

∮
γ̃

i dϕ
∫∫

Σ(x)×Σ(y)

ν̄A′(x)ν̄B′(x)νA(y)ν̂B(y)

(xc − yc)(xc − yc)
d3Σa

(x) ⊗ d3Σb
(y). (5.8)

The field intensity can be expressed via(5.3) and (5.6)as

〈ψ|ψ〉 = 1

4π2

∫∫
Σ2

α2(x)ᾱ2(y)

(xc − yc)(xc − yc)
d3x d3y (5.9)

and thus from(5.6) and (5.8)we deduce

ϑG = −2
∮
〈ψ|ψ〉 cosθ dϕ. (5.10)

For a cyclic evolution inC we require thatψα of (2.10) undergoes cyclic evolution in
H1, and thusϕ passes through an angle 4π. If the field intensity is constant(5.10)yields
ϑG = −8π〈ψ|ψ〉 cosθ, which scales with the field intensity, as required byProposition 4.1.
Forθ = 0, π the evolution is a fixed point inPH1, but nevertheless a closed curve of positive
length inC ⊂ PF, owing to the dependence of|ψc〉〉 on the phase ofψα in (2.10).

The geometric phase for a closed curveΓ ⊂ C is observable, in principle, via the linear
superposition of state vectors in Fock spaceF. According to the discussion surrounding
Corollary 4.2, the (incoherent) superposition|χ〉〉 = |ψc(Λ1)〉〉 + |ψc(Λ2)〉〉 undergoes the
geometric transformation|χ〉〉 �→ |χ′〉〉 = exp(iΛ1ϑG)|ψc(Λ1)〉〉 + exp(iΛ2ϑG)|ψc(Λ2)〉〉
whereψα undergoes cyclic evolution inH1. The vectors|χ〉〉, |χ′〉〉 project to distinct
states inPF, and the Dirac transition probability between the initial and final states can be
calculated in terms of the intensitiesΛ1, Λ2 and geometric phaseϑG. In the caseΛ1 = 0
(i.e. |ψc(Λ1)〉〉 is the vacuum),Λ2 = Λ, this probability reduces to

P(χ, χ′) = 4+ 4(1+ expΛ) cos(ΛϑG)+ (1+ expΛ)2

(3+ expΛ)(1+ expΛ+ 2 cos(ΛϑG))
≤ 1 (5.11)

which is unity forΛ = 0.
Superpositions of coherent states, sometimes referred to as ‘cat’ states, involved in this

situation are very difficult to produce experimentally. Nevertheless, since the principle of
quantum superposition is the only essential feature required, the possibility of producing
such states in experimental situations should not be disregarded, and thereby the discussion
above may acquire experimental as well as theoretical significance.
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5.2. Cyclic evolution in single particle state space

Consider a sequence of measurements starting from an arbitrary initial coherent state,
such that the states resulting from each successive measurement remain coherent. Such a
procedure is the discrete analogue of a dense sequence of measurements on a quantum
system such that the state remains withinC, as described in[2].

Suppose a system is in a coherent state given by
∑∞

n=0Cn|n, α〉〉, withCn = 1/
√
n! and

|n, α〉〉 = |α〉⊗n ∈ Hn as in(2.10). Then a measurement is made, effected byα �→ β, and
described quantum mechanically inH by the projection|α〉 �→ 〈β|α〉|β〉. If the state remains
within C, this can be described by the action of the projection operator

∑∞
n′=0 |n′, β〉〉〈〈n′, β|

on our initial Fock state vector. The resulting state vector is then

∞∑
n′=0

|n′, β〉〉〈〈n′, β|
( ∞∑
n=0

Cn|n, α〉〉
)
=

∞∑
n=0

Cn〈〈n, β|n, α〉〉|n, β〉〉, (5.12)

where we have used〈〈n′, β|n, α〉〉 = δnn′ 〈〈n, β|n, α〉〉 and the inner product coefficients
above satisfy〈〈n, β|n, α〉〉 = |〈β|α〉|n exp(inφαβ) whereφαβ = ph〈β|α〉.

An example of this situation is provided by a classical experiment, due to[40], involving
an incident plane polarized electromagnetic wave encountering a sequence of polarizers,
such that the plane of polarization is returned to its original setting. The experiment is
of interest since a net phase shift can be predicted from the classical Maxwell equations,
and yet the result anticipates the geometric Berry phase of the (more physically correct)
quantum theory[13]. Indeed Pancharatnam’s classical result can be shown within the context
of quantum electrodynamics (QED), provided one works withcoherentstates[10]. This
two-fold description of the phase shift can be understood from the following correspondence
principle.

Lemma 5.1. A classical configurationψα ∈ H1 (e.g. the Pancharatnam classical elec-
tromagnetic wave) arises in the quantum theory(e.g. QED) as the expectation of the field
operatorÂα ⊕ Âα′ in a coherent state. Thus ifψα �→ exp(iα)ψα on cyclic evolution in
PH1, the associated classical field undergoes a phase shiftα.

Proof. From(2.10), (2.4) and (2.5)it follows that the expectation〈〈ψc|(Âα+ Âα′)|ψc〉〉 =
ψα ⊕ ψ̄α′ , i.e. the underlying solution to the classical field equations (cf. also[10]). �

It is instructive to see how the situation relates to the Hilbert space geometry we have
described. The evolution we consider can be considered as a closed curveγ : α → β →
γ → · · · → δ → α in theprojectivesingle particle Hilbert spaceP, obtained by joining
sequential states viageodesics. According to the Pancharatnam in-phase criterion, following
Corollary 3.2, the geodesic construction has a special significance, as follows[8,42].

Lemma 5.2. Given a distinct pair of statesα, β ∈ PH or PF, and the shorter geodesic
γ ⊂ PH joining α, β, the horizontal lift�−1

h [γ] has the property that the state vectors

|α〉 = �−1
h (α) and|β〉 = �−1

h (β) are in-phase according to the Pancharatnam criterion.
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Proof. Construct the (unique) complex projective lineL ⊂ P joiningα, β. The geodesicγ
lies onL, as follows.

The geodesic equation for an affinely parameterized geodesicγ(s) ⊂ (M, gab) is
(d2ψa/ds2) + Γ a

bc(dψ
b/ds)(dψc/ds) = 0 whereΓ is the Christoffel connection of the

metricgab onM. GivenM ⊂ (N, h), andg = hind(M), the condition forγ to be a geodesic
with respect to(N, h) is therefore(Γ a

(h)bc−Γ a
(g)bc)(dψ

b/ds)(dψc/ds) = α(s)(dψa/ds) for
some scalar functionα, and is affinely parameterized inN if and only if α(s) = 0. On
a Kähler manifold, with potentialK, the Christoffel connection is determined byΓ α

βγ =
gαδ

′
∂3K/∂ψβ∂ψγ∂ψ̄δ′ and its complex conjugate, while all other components ofΓ vanish.

In the case of the Fubini-Study metric onCP
n, therefore, we find

Γ α
(g)βγ = 8

gαδ
′

κ3
(n)

(ψ̄βψ̄γψδ′ − κ(n)ψ̄(βδγ)δ′), (5.13)

whereκ(n) = 1+∑n
ψαψ̄α andψα are non-homogeneous coordinates. From the identity

Γ 1
11 = (8/κ3

(n))(g
1δ′ψ̄2

1ψδ′ − g11′κ(n)ψ̄1) on CP
n andψ� = (ψ1,0,0, . . . ) on γ ⊂ L, we

deduce thatΓ 1
(g)11 = Γ 1

(h)11 alongγ, so that(Γ 1
(g)11 − Γ 1

(h)11)(dψ
1/ds)2|γ = 0, i.e. the

condition forγ ⊂ L to be geodesic with respect toCP
n.

Choose polar coordinates onL as in(5.6), with polar axis in theα direction. A geodesic
then hasϕ constant, and(5.6) is a horizontal curve asθ varies. The overlap between the
resulting state vectors is〈α|β〉 = cos(1/2)θβ ≥ 0, as required by the Pancharatnam
criterion. �

On the other hand, given a discrete sequence of states, it is possible to generate a cyclic
evolutionγ ⊂ P by joining sequential states by a set ofarbitrary curves inP. In this case,
however, sequential state vectors, obtained from the horizontal lift ofγ, are not necessarily
in-phase. Conversely if we require sequential state vectors to be in-phase, for arbitraryγ,
then�−1[γ] is not horizontal in general.

Using the geodesic polygon construction, therefore, the geometric phaseϑG can be cal-
culated forγ ⊂ P. The horizontal lift of�−1[γ] ⊂ H is anopencurve, and our original
state vector acquires an overall factorF exp(iϑG) whereϑG = φαβ + φβγ + · · · + φδα and
F = |〈α|β〉〈β|γ〉 · · · 〈δ|α〉|. This fact can be exploited by exponentiating the state vector
resulting from the cyclic evolution inP and forming its corresponding coherent state vector
according to(2.10). Thus we have the following result.

Proposition 5.3. The interference resulting from a discrete sequence of measurements on a
quantum system whose state remains withinC and whose evolution is cyclic inPwith |α〉 �→
|α′〉 = |F eiϑGα〉 ∈ H is given by the Dirac transition probability|〈〈αc|α′c〉〉|2/(〈〈αc|αc〉〉
〈〈α′c|α′c〉〉) according to

T = exp[−〈α|α〉(1− 2F cosϑG + F2)]. (5.14)

ThenϑG is the(Berry) geometric phase acquired inP and coincides with the ‘classical’
phase shift observed by Pancharatnam; the quantityF2 is the factor by which the intensity
of the field is scaled.
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In this case the relevant state space is the Poincaré sphere of polarization states, for fixed
4-momentumpa, which is isomorphic to the state space for a spin- 1

2 particle. The phase
shift ϑG in the ‘classical’ electromagnetic wave is therefore equal tohalf the solid angle
subtended by the geodesic polygon on the Poincaré sphere.

5.3. Cyclic evolution in momentum

An experiment of Tomita and Chiao describes the passage of a photon through a fibre
optic medium, with changing momentum direction due to the curvature of the medium
[44]. Suppose that the quantum electrodynamic field is described by a coherent state vector
|ψc〉〉, as in(2.10), throughout the passage of the photon along the fibre. This assumption
is consistent with the uncertainty principle applied to the photon along its trajectory. Ac-
cordingly the Heisenberg inequality is saturated, and&x, &p are constants of the motion.
Correspondingly in terms of the geometry of the universal bundleU over the projective
Fock space� : U→ PF the trajectory is horizontal inU, as explained e.g. in[23].6 (The
single particle state vector is afreeelectromagnetic field in that the charge-current 4-vector
vanishes inside and outside the fibre optic medium; accordingly it is described by a solution
to the homogeneous Maxwell equations. The field is nevertheless constrained by certain
boundary conditions imposed by the geometry of the fibre.)

In the Tomita–Chiao experiment the polarization state does not return to its original value.
Instead, themomentumof the photon undergoes cyclic evolution, and the geometrical phase
that emerges provides an example of thequantum angles[3] that, in the classical limit, reduce
to Hannay’s angles([28]; cf. [46]).

An arbitrary evolutionΥ for the (spatial) directional part7 of the 4-momentum of the pho-
ton can be generated in terms of its corresponding principal null direction (cf.Section 5.1).
This is achieved via the action of the SU(2) spin operator in the fundamental (i.e. spin-1

2)

representation, denoted̂J(1/2). As Υ(θ) is traversed, as shown inFig. 2, the principal null
spinorνA satisfies

i
∂νA

∂θ
= n(θ) · Ĵ(1/2)νA, (5.15)

wheren(θ) is a unit vector defining an instantaneous axis of rotation on the 2-sphere of mo-
mentum directions. This coincides with the Schrödinger evolution of the wave-functionνA

of a spin-12 particle in a (unit) magnetic field aligned withn. Consistently, the Pauli–Lubanski
spin vector of the photonsa = (1/2)eabcdp

bMcd (Mab = Mab
0 − xapb + xbpa) is aligned

with its 4-momentum (see e.g.[46]).
Observe that, for a given evolutionΥ , there existinfinitelymany generatorsn(θ), as shown

in Fig. 2. This multiplicity can be understood as follows. For the spinorνA to generateΥ it
is necessary and sufficient that∂νa(θ)/∂θ is tangent to the prescribedΥ ⊂ S2. For a given
Υ , the family of null vectors{νa(θ)} is fixed; by energy conservationtaνa is constant and so

6 Indeed if the photon were to exist in some state of definite momentum along the fibre, this would violate the
uncertainty principle&x&p ≥ (1/2)h̄, since&x remains bounded by virtue of the geometry of the fibre optic
medium.

7 We assume energy conservation, so that forpa = (p0;p), p0 and|p|2 are constants of the motion.
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Fig. 2. Generation of rotation of spacelike 3-momentum of photon in terms of principal null direction decomposition
and exponential action of SU(2) spin operator.

νA is subject to the freedomνA �→ exp(iφ(θ))νA for real valuedφ (underνA �→ λνA the
energy density transforms asT00 ≡ φABφ̄A′B′ t

AA′ tBB′ �→ |λ|4T00 so energy conservation
implies|λ| = 1).

Correspondingly the spinor derivative transforms as

∂νA

∂θ
�→ exp(iφ)

(
∂νA

∂θ
+ iφ′νA

)
(5.16)

which freedom preserves∂νa/∂θ. The relevant geometrical feature here is that the trans-
formed derivative∂νA/∂θ is not proportional to its original value, via theφ′ term in the
transformation(5.16). The freedom in the phase functionφ(θ) is reflected in that of the
spin operatornφ(θ) · Ĵ(1/2), determined by the transformation(5.16)asnφ = exp(iφ)[n −
(1/3)φ′Ĵ(1/2)], which generates∂νA/∂θ according to(5.15).

In the Tomita–Chiao experiment, for eachP ∈ Υ , theJ axis is chosenorthogonalto the
instantaneouspa axis, i.e. within the(x, y)-plane, so that the corresponding circle inFig. 2
is ageodesic. This property follows from the physical requirement that the triad(x, y, p)

shown inFig. 2 has zero angular velocity about the instantaneousp-axis, i.e. there is no
torsion. The tangent property and orientation ofΥ then fixesĴ uniquely. (A discussion of
this geometry is given in[11], although this does not refer to the Tomita–Chiao experiment
explicitly; cf. also Ref. [5] of[1].)

The spin wave-functionνA therefore evolves according to the Schrödingerequation (5.15),
such that〈Ĥ〉 = 0 for all θ, since theνA spinor axis is orthogonal to the spin operator
(magnetic field) directionn. The evolution therefore coincides with that determined by
the modified Schrödingerequation (3.6), so thatνA evolveshorizontallyin U and acquires
the geometric phaseϑG aroundΥ . The anti-self-dual electromagnetic spinorψAB = νAνB
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therefore acquirestwice this phase 2ϑG, i.e. a phase factor exp(2iϑG). Its self-dual coun-
terpartψA′B′ therefore acquires the conjugate factor exp(−2iϑG), since its principal null
spinor νA′ lies in the conjugate spin spaceSA′ (cf. the factor i in (5.15)). A general
polarization state can be written|Fab〉 = z|ψAB〉 ⊕ w|ψA′B′ 〉, and so the stereographic
coordinateq = w/z undergoesq �→ exp(−4iϑG)q, which preserves the relative ampli-
tudes of the right-handed (self-dual) and left-handed (anti-self-dual) contributions to|Fab〉.
Accordingly theStokes’ vectorp = √

q undergoesp �→ exp(−2iϑG)p, and is there-
fore rotated by 2ϑG about the axis defined by the helicity eigenstates, i.e. by the solid
angleα subtended byΥ on the sphere ofmomentumdirections. Since|q| is preserved,
the eccentricity of the ellipse of polarization is invariant, and its principal axis is rotated
by α.

The case of plane polarization is|q| = 1, while pure helicity eigenstates correspond to
q = 0,∞ for which the field is said to becircularly polarized. In the circular case, the
transformation of the Stokes vector is degenerate, and not observable at the level of the
single particle Hilbert spaceH1. Nevertheless,|Fab〉 acquires a pure geometric phase factor
exp(±2iϑG), and therefore the evolution is cyclic inPH1. The associated classical field,
according to Lemma 5.1, therefore acquires a phase shiftα. Indeed, in this case, the phase
shift acquired coincides with Berry’s phaseϑ(ψ)G , as seen e.g. by writing the latter in terms

of the tensor product i
∮ 〈ν̃A⊗ ν̃B|ν̃A⊗dν̃B+ ν̃B⊗dν̃A〉which is equal to 2ϑ(ν)G . The factor

of two here arises from the 2-factor principal null decomposition of the field spinor, and
should be contrasted with the case of the Pancharatnam experiment described inSection 5.2
for which the solid angleα arises on the space of polarization states of the electromagnetic
wave withconstantmomentum (cf. also Eq. (17) et seq. in[10]), and instead the phase shift
acquired is(1/2)α.

These results generalize to massless fields of arbitrary spins = (1/2)n, as follows. A field
of spin-s can be decomposed into principal spin vectors as then-fold symmetric product
ψAB...E = λ(AµB . . . νE), and in the null caseλ = µ = · · · = ν. In the case of constant
momentum (principal null spinor) the state space is isomorphic to that of a spin-1

2 system,
and thus for cyclic evolution inPH1, the classical configuration, according toLemma 5.1,
acquires a phase shift1

2α, independentof s.
In the case of cyclic evolution in the momentum, the anti-self-dual spinor acquires

a phase factor exp(inϑG), so that the stereographic coordinate is transformed byq �→
exp(−2inϑG)q. For arbitrary spin the Stokes’ vector is given byp = q1/n, which therefore
undergoesp �→ exp(−2iϑG)p, corresponding to a spatial rotation ofα = 2ϑG, whereα is
the solid angle subtended on the sphere of principal null directionsP{νA}.8 The result is
therefore independent ofs, and coincides with the angle of rotation of the triad inFig. 2
about thep-axis, when this is parallel propagated aroundΥ .

On the other hand, for pure helicity states,q = 0,∞, the evolution is cyclic inPH1

and, according toLemma 5.1, the associated classical field undergoes a phase shiftsα. For
example, in the case of the (yet unobserved) graviton, for whichs = 2, we predict a phase
shift 2α. This prediction could in principle manifest itself in a classical phase shift of this

8 In the case of the graviton (see e.g.[36]) neighboring polarization vectors lie atπ/4 to each other, and the
linearized metric(hxx, hxy) arises as two-fold tensor products of these.
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amount in gravitational wave detection. Such an observation would vindicate the proposed
spin-2 nature of the quantized gravitational field.

6. Conclusions

The main results of the paper are as follows. InSection 2we have developed the quantum
theory in geometric language and applied this to the space of coherent states for a bosonic
quantum field.Theorem 2.1establishes the intrinsic Euclidean geometry of the coherent
state manifold in the context of both (single particle,H1) quantum mechanics and bosonic
quantum field theory (Fock space,F). Section 3develops the symplectic construction of
the geometric phase in a self-contained manner in terms of the Kähler geometry of the
projective Hilbert space of states.Theorem 3.3establishes the relationship between the
geometric phase and the metrical area of a spanning surface for a given cyclic evolution. In
Section 4the geometric phase construction is applied to the space of coherent states. Using
the result ofTheorem 2.1, an expression for the geometric phase for a cyclic evolution with
respect to the coherent state manifold is derived inProposition 4.1. Comparison with the
corresponding expression for single particle quantum mechanics, derived inProposition 3.1,
yields a surprising and interesting result relating the two phases by the field intensity, which
is provided inProposition 4.2.

Section 5provides three illustrations of the geometric phase arising in situations of co-
herent state evolution, in the case of electromagnetism. The purpose of these examples is to
demonstrate the different ways in which thecyclic nature of the evolution can arise. In the
first example the coherent state itself, regarded as an element of theprojectiveFock space,
undergoes cyclic evolution, and spinor expressions for the phase acquired by the (Fock) state
vector are derived. An (incoherent) superposition of two such states, of different intensities,
undergoing cyclic evolution acquires a relative geometric phase, and the transition proba-
bility amplitude between the original and resultant superpositions is calculated explicitly.

In contrast the second example concerns a situation for which the evolution is cyclic in the
singleparticle state spacePH1. In this case however the coherent state after cyclic evolution
is different to the original state, and the resultant corresponds to the classical phase shift in
an electromagnetic wave described in[40].

The third example involves a photon (zero rest-mass particle) passing through a medium
such that themomentumof the particle undergoes cyclic evolution. In this case, in contrast
to the previous two examples, neither the single particle state nor the coherent state are
restored to their original values. The result of such evolution is that the plane of polarization
of the particle is rotated by the solid angle subtended on the sphere of momentum directions.
These results generalize to arbitrary spin, as indicated at the end ofSection 5.

In a more general context, it is worth emphasizing that our results may have significant
consequences in the areas of quantum computation and cryptography, through provision of
the additional ‘qubit’ of informationϑG. In other words, the cyclic evolution of a quantum
state is able to store (some) information about the history of the state, which is encoded
in the phase of the state vector. This could be exploited, for example, in designing more
efficient quantum computing algorithms and in the design of quantum keys.
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